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1 Constant Distance Traveling Tournament Problem

In this abstract, we deal with the Constant Distance Traveling Tournament
Problem (CDTTP) [4], which is a special class of the Traveling Tournament
Problem (TTP), established by Easton, Nemhauser and Trick [1]. We propose a
lower bound of the optimal value of CDTTP, and two algorithms that produce
feasible solutions whose objective values are close to the proposed lower bound.
For some size of instances, our algorithms yield feasible solutions better than
the previous best solutions.

In the following, several definitions for CDTTP are introduced. Given even
n, the number of teams, a double round-robin tournament is a set of games
in which every team plays every other team exactly once at home and once at
away. A game is specified by an ordered pair of opponents. Exactly 2(n−1) slots
or time periods are required to play a double round-robin tournament. Each
team begins at its home site and travels to play its games at the chosen venues.
Each team then returns (if necessary) to its home at the end of the schedule.
The number of trips of a team is defined by the number of moves of the team
between team sites. Consecutive away games for a team constitute a road trip;
consecutive home games are a home stand. The length of a road trip or home
stand is the number of opponents playing against in the road trip/home stand.
The problem CDTTP is defined as follows.
Input: the number of teams, n;
Output: a double round-robin tournament of n teams such that

1. the length of any home stand and that of any road trip is at most three;
2. no repeaters (A at B immediately followed by B at A is prohibited);

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 402–405. ISBN 80-210-3726-1.



3. the total number of trips taken by teams is minimized.

The CDTTP and its variations are discussed in [3, 5]. The CDTTP can be
considered as a special class of the original TTP [1] such that all distances
between team sites are one.

In the rest of this abstract, a schedule of double round-robin tournament
satisfying the above conditions 1 and 2 is called a feasible schedule.

2 Lower Bound

We proved the following lemma that provides a lower bound of the optimal value
of CDTTP. Due to space limitation, the proof is omitted.

Lemma 1. The total number of trips of every feasible schedule of n teams is
greater than or equal to LB(n) defined by

LB(n) def.=





(4/3)n2 − n (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n− 1 (n ≡ 1 mod 3),
(4/3)n2 − (2/3)n (n ≡ 2 mod 3).

3 Algorithms

We propose two algorithms for constructing feasible schedules by modifying sin-
gle round-robin tournaments. Due to space limitation, for both algorithms we
describe these procedures for the case of n ≡ 1 mod 3, and show only the results
for n ∈ {0, 2} mod 3.

3.1 Modified Circle Method

First, we propose the algorithm named Modified Circle Method (MCM). Denote
the set of teams by T = {1, 2, . . . , n}. We introduce a directed graph Ge = (T,Ae)
with a vertex set T and a set of mutually disjoint directed edges

Ae def.= {(j, n + 1− j) : dj/3e is even, 1 ≤ j ≤ n/2}
∪ {(n + 1− j, j) : dj/3e is odd, 1 ≤ j ≤ n/2}.

For any permutation π on T , Ge(π) denotes the set of n/2 matches satisfying that
every directed edge (u, v) ∈ Ae corresponds to a match between π(u) and π(v)
held at the home of π(v). For each j ∈ {1, 2, . . . , n − 1} = T \ {n}, we define a
permutation πj by (πj(1), πj(2), . . . , πj(n)) = (j, j +1, . . . , n−1, 1, . . . , j−1, n).
Let Go be a directed graph obtained from Ge by reversing the direction of the
edge between 1 and n. Let X be a single round-robin tournament satisfying
that matches in slot s are defined by Go(πs) (if s ∈ {1, 2, 3} mod 6) and Ge(πs)
(if s ∈ {4, 5, 0} mod 6). For each i ∈ {1, 2, . . . , (n − 1)/3}, we denote a partial
schedule of X consisting of a sequence of three slots (3i−2, 3i−1, 3i) by Xi. Now
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we construct a feasible schedule Y by concatenating partial schedules consisting
of three slots as follows:
Y = (X1, X1, X2, X2, X3, X3, X4, X4, X5, . . . , Xn−1

3
, Xn−1

3
), where Xi is a partial

schedule obtained from Xi by reversing venues.
For n ≡ 1 mod 3, MCM produces a feasible schedule Y of which the total

number of trips is (4/3)n2 − (1/2)n− 4/3 = LB(n) + (1/3)n− 1/3. Since we do
not have the space for describing MCM for n ∈ {0, 2} mod 3, we simply state our
results as below. Let the total number of trips of a feasible schedule Y be w(Y ).

Theorem 1. The Modified Circle Method produces a feasible schedule Y such
that

w(Y ) =





(4/3)n2 − (2/3)n− 1 = LB(n) + (1/3)n− 1 (n ≡ 0 mod 3),
(4/3)n2 − (1/2)n− 4/3 = LB(n) + (1/3)n− 1/3 (n ≡ 1 mod 3),
(4/3)n2 + (1/6)n− 5/3 = LB(n) + (5/6)n− 5/3 (n ≡ 2 mod 3).

3.2 Minimum Break Method

Here we propose the algorithm named Minimum Break Method (MBM). The
procedure of MBM is also described only for the case of n ≡ 1 mod 3.

Given a feasible schedule, it is said that a team has a break at slot s if it
has two consecutive home games (home break) or two consecutive away games
(away break) in slots s− 1 and s. The total number of breaks b(Y ) is defined as
the sum of the number of breaks of all the teams in a feasible schedule Y .

Let X be a schedule of a single round-robin tournament satisfying the fol-
lowing conditions:
(C1) the number of breaks b(X) is equal to n− 2;
(C2) at each slot s ∈ {3, 5, 0} mod 6, exactly two teams have a break.
When n ≤ 50, we have obtained a single round-robin tournament satisfying (C1)
and (C2) by solving integer programming problems (e.g., see [2]). Now we con-
struct a single round-robin tournament X ′ from X by reversing venues for each
even slot. Then X ′ satisfies that exactly two teams have n − 2 breaks, other
teams have n− 3 breaks, and every team has a break at slot s satisfying s > 1
and s ≡ 1 mod 3. For each i ∈ {1, 2, . . . , (n−1)/3}, we denote a partial schedule
of X ′ consisting of a sequence of three slots (3i − 2, 3i − 1, 3i) by X ′

i. Now we
construct a feasible schedule Y ′ by concatenating partial schedules consisting of
three slots as follows:
Y ′ = (X ′

1, X
′
1, X

′
2, X

′
2, X

′
3, X

′
3, X

′
4, X

′
4, X

′
5, . . . , X

′
n−1

3
), where X ′

i is a partial sched-

ule obtained from X ′
i by reversing venues.

For n ≡ 1 mod 3, the above procedure produces a feasible schedule Y ′ such
that w(Y ′) = (4/3)n2 − (5/6)n − 1 = LB(n). For n ∈ {0, 2} mod 3, again we
simply state our results as follows.
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Table 1. Results for 16 ≤ n ≤ 24

n LB(n) MCM MBM known

16 327 332 *327 327
18 414 419 426 418
20 520 535 529 521
22 626 633 *626 632
24 744 751 755 757

*: our solutions that attain the lower bound LB(n)
known: the known best solutions in [4], as of April 2006

Theorem 2. If there is a round-robin tournament satisfying Conditions (C1)
and (C2), the Minimum Break Method produces a feasible schedule Y ′ such that

w(Y ′) =





(4/3)n2 − (1/2)n− 1 = LB(n) + (1/2)n− 1 (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n− 1 = LB(n) (n ≡ 1 mod 3),
(4/3)n2 − (1/6)n− 1 = LB(n) + (1/2)n− 1 (n ≡ 2 mod 3).

As mentioned before, we have already obtained schedules satisfying (C1)
and (C2) for n ≤ 50. Using MBM with them as initial solutions, we obtained
feasible schedules (see Table 1).

Lastly, we summarize our results. For n ≡ 0 mod 3, MCM gives better so-
lutions compared to MBM. In contrast, for n ∈ {1, 2} mod 3 MBM performs
better though it needs an initial schedule satisfying Constraints (C1) and (C2).
In addition, when n ≡ 1 mod 3, with an initial schedule MBM yields a solu-
tion that attains LB(n), i.e., an optimal solution. Table 1 shows the results for
16 ≤ n ≤ 24: for n = 24 both algorithms produced better solutions than the
previous best; for n = 22 MBM gave an optimal solution.
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