
Tour Scheduling with Skill Based Costs
Abstract

Ed Mooney1 and Tom Davidson2

1 Montana State University, Bozeman MT 59717, USA
2 Naval Undersea Warfare Center, Keyport WA 98345, USA

We propose an approach to the tour scheduling problem that neglects some
elements of the general problem to quickly produce feasible tours that minimize
hourly staffing costs. An efficient probabilistic local search algorithm solves a
quadratic integer program representation of the problem. The resulting schedules
may be used as templates to develop final schedules, or problem parameters can
be refined to reflect days off and other requirements and the algorithm rerun.

We formulate the tour scheduling with skill based costs (TSSC) problem as
a binary quadratic integer program. We solve TSSC over a planning horizon in
days, d = 1, . . . , nd, with a fixed number of periods (e.g. hours) in a day. The
set of time periods can then be indexed across the planning horizon by the set
T = {t : t = 1, . . . , nt}. Furthermore, there is a known set of functions, or types
of tasks, to be performed indexed by the set F = {f : f = 1, . . . , nf}.

The number of employees required for each function in each time period is
specified in a ntxnf requirements matrix with elements rft. The set of employee
indexes, E = {e : e = 1, . . . , ne}, is also given. Employee e has skills qualifying
him or her to perform a subset of functions, Fe ⊆ F and is available for a subset
of the time periods, Te ⊆ T specified by a crossout matrix obtained prior to
scheduling. The subset of employees available to perform function f in period t,
Eft ⊆ E, can be be deduced from Te and Fe.

We wish to minimize the total cost of assigning employees to satisfy the
requirements and the number of non-adjacent assignments for employees within a
day. The linear cost of assigning employee e to function f in period t is computed
as the sum of the base hourly cost, c1, plus the skill level increment, c2 | Fe |,
where | Fe | is the number of functions employee e is qualified to perform.
Hence, more skilled employees cost more per hour but allow more scheduling
flexibility. Roughly equal daily shift lengths and contiguous periods within a
day are encouraged by a quadratic term in the objective.

Hard constraints require that all staffing requirements be satisfied and em-
ployees assigned to at most one function per time period. Soft constraints rep-
resent the desire to restrict the assignments for each employee, e, to be within
specified minimum and maximum total periods, Pmine and Pmaxe, over the
planning horizon.

The Dynamic Biased Sampling (DBS) local search algorithm was adapted to
solve TSSC. DBS efficiently implements many of the advanced tabu search diver-
sification and intensification mechanisms such as short and long term memory
and aspiration criteria. Local search moves used to solve TSSC involve changing

the employee assigned to an f, t pair, or slot, to a feasible alternative. Candi-
date moves are sampled using a priority scheme that reflects the recency and
frequency with which a slot’s assignment has been changed. As applied to TSSC,
the initial solution need not be feasible, and the moves need not be improving.

The DBS algorithm was applied to TSSC in a two phases. In the first phase,
employee conflict-free assignments are found while improving the objective if
possible. Once resource conflicts are removed, the second DBS phase attempts
to reduce violations of the soft constraints and improve the objective function
value while maintaining assignment and conflict feasibility. Lexicographic move
evaluation is used where moves are ranked according to whether they (1) main-
tain hard constraint satisfaction, (2) maintain or reduce soft constraint viola-
tions, and, as a final tie braking criteria, (3) improve the objective function. A
quadratic representation of the resource conflict constraint is used in the first
phase of the heuristic and is dualized in the objective function. This formulation
results in more efficient move evaluation. A problem generator was coded to
create test problem instances with known characteristics and at least one fea-
sible solution. The generator was coded in C and output problem instances for
input to the search code. Input to problem generator included:

– Average demand (employees) per period, D
– Load factor, LF
– Average percent of periods employees unavailable (percent cross out), CO
– Percent deviation from the periods each employee is available, DEV
– Average percent of functions each employee is qualified to do, F

Output from the generator specifies the parameter values for an instance of
the TSSC problem. The output includes staffing demand requirements for each
function, the total number of employees and their attributes, as well as specified
parameters such as the planning horizon length.

The search algorithm was run with 60 test problem cases and three instances
of each case for a total of 180 instances. The load factor (LF) was set to 5, the
deviation (DEV) was 1, and the number of functions was 5 for all instances.
Similarly, all instances ran for seven 16 period (hour) days, or a total of 112
periods. The cases were defined by specifying the average levels of demand (D),
employee cross-out (CO) fraction, and employee qualified function fraction (F).
Average per-period demand was set at 5, 10 and 15. The average cross-out
fraction (CO) levels were .2, .35, .5, for all demand levels. A cross-out fraction
of .7 was also run for D=5. And, the average fraction of functions (F) used were
.1 through .6 in increments of .1.

The cost parameters, c1 and c2 were set to 5 and .5 for all runs, and minimum
and maximum employee hours constraints were relaxed. The runs were termi-
nated after 5,000 iterations. Runs were made on a Dell 8200 with a 2.3 Ghz
Pentium 4 processor running Windows XP professional. The code was compiled
with Microsoft Visual Studio 6.0 in release mode and run under MinGW.

All (random) initial solutions had a large number of resource conflicts, which
were removed in phase 1 very quickly. The average objective function improve-
ment ranged from approximately 21% to 43%. The average time to the best

solution ranged from 2.12 seconds for one of the smallest cases to 79.85 seconds
for one of the largest ones. The best solution was found close to iteration 5,000
in all cases, indicating that the search was still finding better solutions almost
to the end.

Solution quality for all test cases was quite good with average gaps with
a naive bound ranging from 3.4% to 14.4%. The bound was obtained with all
constraints relaxed and the minimum cost choice made for each assignment.
This bound is probably not very good, but was better for problems with less
variability in the requirements and employee characteristics. The gap increased
with problem size as indicated by demand and somewhat more dramatically
with the average fraction of the functions an employee can perform. This is
likely mostly due to a degradation in the bound due to the way the number of
functions are sampled for employees.

