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Abstract. The break minimization problem is to find a home-away
assignment that minimizes the number of breaks for a given timetable
of a round-robin tournament. In a recent paper, Elf, Jinger and Rinaldi
conjectured that the break minimization problem is solvable in polyno-
mial time when the optimal value is less than the number of teams. This
paper proves their conjecture affirmatively by showing that a problem re-
lated to the break minimization problem is solvable in polynomial time.
Our approach is to transform an instance of the related problem into
instances of the 2-satisfiability problem.

In this paper, we prove a previously proposed conjecture about the break mini-
mization problem in sports timetabling.

We consider a round-robin tournament with the following properties:

e the number of teams is 2n (n € IN), and the number of slots, i.e., the days
when matches are held, is 2n — 1;

e each team plays one match in each slot;

e cach team plays every other team once;

e cach team has its home, and each match is held at the home of one of the
corresponding two teams.

Figure 1 is a timetable of a round-robin tournament satisfying these properties.

In the figure, each match with ‘Q’ means that the match is held at the home of

the opponent; without ‘Q’ is held at the home of the team corresponding to the

row. For example, in slot 5 team 2 plays team 3 at the home of team 2. In other

words, team 3 plays at away in slot 5, whereas team 2 plays at home.

If a team plays either both at home or both at away in slots s — 1 and s, it
is said that the team has a break at slot s. In Fig. 1, team 3 plays at home in
slots 1 and 2, and thus team 3 has a break at slot 2. In total, the timetable has
six breaks, each of which is represented as a line under the corresponding entry.

Given a timetable not assigned where to play, one should decide a home-
away assignment to complete a timetable (Fig.2). In most of practical sports
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Fig. 1. A timetable with six breaks

timetabling, a break is considered undesirable and the number of breaks in a
timetable is required to be reduced. In this context, the break minimization
problem is introduced as follows.

Break Minimization Problem

Instance: A timetable without a home-away assignment.

Task: Find a home-away assignment that minimizes the number of breaks for
a given instance.

The timetable without a home-away assignment of Fig.2 is an instance of the
break minimization problem. Although the timetable of Fig.1 shows a feasible
home-away assignment for the instance, it is suboptimal. The timetable of Fig. 2
is an optimal solution, whose optimal value is four.

There are some previous results on the break minimization problem: Régin [6]
solved up to 20 teams instances with constraint programming; Trick [7] pro-
posed integer programming formulations and solved instances up to 22 teams;
Elf, Jinger and Rinaldi [3] formulated this problem as MAX CUT, and solved
instances up to 26 teams. All of them are exact methods based on branch-
and-bound techniques. The authors [5] formulated this problem as MAX RES
CUT and MAX 2SAT, and solved instances up to 40 teams with Goemans and
Williamson’s approximation algorithm for MAX RES CUT [4], though the ob-
tained solutions are not necessarily optimal.

There are some open problems about break minimization. Although it is
conjectured that the break minimization problem is NP-hard, the complexity
status is not yet determined. Concerning the complexity, Elf et al. [3] reported
the following results: their instances of the break minimization problem were
solved very quickly when the instances had the optimal value 2n — 2. (The
value 2n — 2 is a lower bound of the objective value for any instance of 2n teams,
because a timetable of 2n teams has at least 2n—2 breaks [2].) According to their
experience, they conjectured that the break minimization problem is solvable in
polynomial time if a given instance of 2n teams has the optimal value 2n — 2.

We prove their conjecture affirmatively by showing that the following problem
is solvable in polynomial time.
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Fig. 2. A timetable without a home-away assignment and with an optimal assignment

Problem (P)
Instance: A timetable of 2n teams without a home-away assignment.

Task: Find a home-away assignment with 2n — 2 breaks for a given instance,
or decide that none exists.

In the following, we show that Problem (P) is solvable in O(n?) steps. For Prob-
lem (P), we define Subproblem (Py) as follows (k € T, where T is a set of teams,
ie, {1,2,...,2n}). It is not difficult to see that Problem (P) is feasible if and
only if at least one of (Py), (P2), ..., and (Py,) is feasible.

Subproblem (Py)

Task: For a given instance of Problem (P), find a home-away assignment with
2n — 2 breaks in which team k has no breaks and plays at home in slot 1, or
decide that none exists.

The feasibility of Subproblem (Pj) is equivalent to that of Subproblem (P})
defined below. In addition, a feasible home-away assignment of (Pj) can be con-
structed from that of (P}), by substituting home/away for away /home in all even
slots. (More generally, the following statement holds: by the above substitution,
for a given instance an optimal solution of the break minimization problem is
obtained from that of the break mazimization problem and vice versa.)

Subproblem (P})

Task: For a given instance of Problem (P), find a home-away assignment with
2n(2n — 2) — (2n — 2) breaks in which team k has 2n — 2 breaks and plays
at home in slot 1, or decide that none exists. (In other words, team k plays
only at home and every other team has at most one “non-break.”)

Now we formulate Subproblem (P}) (k € T') as the 2-satisfiability problem
(2SAT). Let S be a set of slots, i.e., {1,2,...,2n — 1}. We define a Boolean
variable z; ;s (t € T, s € S) as follows: a variable ;s is FALSE if team ¢ plays
at home in slot s, otherwise TRUE. Then, an instance of Subproblem (P}) is
described as follows.



Find ;€ {TRUE, FALSE} (Vt€ T, Vse€ S)
s.t. s = FALSE (Vs € 5),
Ty F Lr(t,s),s (VteT, Vs €S9),
(Mt eT\{k}, Vs€S, s <Sski),
Tt s—1 V Ty s (Vt e T\{k}, Vs €S, s> si1),
Te1 V T on—1 (Vt € T'\ {k})
where 7(t, s): the opponent of team ¢ in slot s in the given instance;
Skt the slot when team £ plays team ¢ in the given instance.

Tt s V Tp st

Each constraint can be represented as clause(s) with two literals. Thus, this is an
instance of 2SAT; both the number of variables and that of clauses are O(n?).
Since 2SAT with p literals and ¢ clauses can be solved in O(p + q) steps [1],
Problems (P}) and (P) are solvable in O(n?) and O(n?) steps, respectively.

Finally, we mention a home-away assignment with 2n breaks. A home-away
assignment in which each team has exactly one break is said to be equitable [2],
and it is sometimes preferred to a home-away assignment with 2n — 2 breaks.
We note that the following problem is also solvable in O(n?) steps.

Problem (P)

Instance: A timetable of 2n teams without a home-away assignment.

Task: Find a home-away assignment in which each team has exactly one break
for a given instance, or decide that none exists.
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