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Abstract. The break minimization problem is to find a home-away
assignment that minimizes the number of breaks for a given timetable
of a round-robin tournament. In a recent paper, Elf, Jünger and Rinaldi
conjectured that the break minimization problem is solvable in polyno-
mial time when the optimal value is less than the number of teams. This
paper proves their conjecture affirmatively by showing that a problem re-
lated to the break minimization problem is solvable in polynomial time.
Our approach is to transform an instance of the related problem into
instances of the 2-satisfiability problem.

In this paper, we prove a previously proposed conjecture about the break mini-
mization problem in sports timetabling.

We consider a round-robin tournament with the following properties:
• the number of teams is 2n (n ∈ IN), and the number of slots, i.e., the days

when matches are held, is 2n− 1;
• each team plays one match in each slot;
• each team plays every other team once;
• each team has its home, and each match is held at the home of one of the

corresponding two teams.
Figure 1 is a timetable of a round-robin tournament satisfying these properties.
In the figure, each match with ‘@’ means that the match is held at the home of
the opponent; without ‘@’ is held at the home of the team corresponding to the
row. For example, in slot 5 team 2 plays team 3 at the home of team 2. In other
words, team 3 plays at away in slot 5, whereas team 2 plays at home.

If a team plays either both at home or both at away in slots s− 1 and s, it
is said that the team has a break at slot s. In Fig. 1, team 3 plays at home in
slots 1 and 2, and thus team 3 has a break at slot 2. In total, the timetable has
six breaks, each of which is represented as a line under the corresponding entry.

Given a timetable not assigned where to play, one should decide a home-
away assignment to complete a timetable (Fig. 2). In most of practical sports
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1 2 3 4 5 (slot)
1 : @6 @3 @5 2 @4
2 : @5 6 4 @1 3
3 : 4 1 @6 5 @2
4 : @3 5 @2 6 1
5 : 2 @4 1 @3 @6
6 : 1 @2 3 @4 5

(team)

Fig. 1. A timetable with six breaks

timetabling, a break is considered undesirable and the number of breaks in a
timetable is required to be reduced. In this context, the break minimization
problem is introduced as follows.

Break Minimization Problem
Instance: A timetable without a home-away assignment.
Task: Find a home-away assignment that minimizes the number of breaks for

a given instance.

The timetable without a home-away assignment of Fig. 2 is an instance of the
break minimization problem. Although the timetable of Fig. 1 shows a feasible
home-away assignment for the instance, it is suboptimal. The timetable of Fig. 2
is an optimal solution, whose optimal value is four.

There are some previous results on the break minimization problem: Régin [6]
solved up to 20 teams instances with constraint programming; Trick [7] pro-
posed integer programming formulations and solved instances up to 22 teams;
Elf, Jünger and Rinaldi [3] formulated this problem as MAX CUT, and solved
instances up to 26 teams. All of them are exact methods based on branch-
and-bound techniques. The authors [5] formulated this problem as MAX RES
CUT and MAX 2SAT, and solved instances up to 40 teams with Goemans and
Williamson’s approximation algorithm for MAX RES CUT [4], though the ob-
tained solutions are not necessarily optimal.

There are some open problems about break minimization. Although it is
conjectured that the break minimization problem is NP-hard, the complexity
status is not yet determined. Concerning the complexity, Elf et al. [3] reported
the following results: their instances of the break minimization problem were
solved very quickly when the instances had the optimal value 2n − 2. (The
value 2n−2 is a lower bound of the objective value for any instance of 2n teams,
because a timetable of 2n teams has at least 2n−2 breaks [2].) According to their
experience, they conjectured that the break minimization problem is solvable in
polynomial time if a given instance of 2n teams has the optimal value 2n− 2.

We prove their conjecture affirmatively by showing that the following problem
is solvable in polynomial time.



1 2 3 4 5

1 : 6 3 5 2 4
2 : 5 6 4 1 3
3 : 4 1 6 5 2
4 : 3 5 2 6 1
5 : 2 4 1 3 6
6 : 1 2 3 4 5

1 2 3 4 5

1 : @6 3 @5 2 @4
2 : @5 6 4 @1 3
3 : 4 @1 @6 5 @2
4 : @3 5 @2 6 1
5 : 2 @4 1 @3 @6
6 : 1 @2 3 @4 5

Fig. 2. A timetable without a home-away assignment and with an optimal assignment

Problem (P)
Instance: A timetable of 2n teams without a home-away assignment.
Task: Find a home-away assignment with 2n − 2 breaks for a given instance,

or decide that none exists.

In the following, we show that Problem (P) is solvable in O(n3) steps. For Prob-
lem (P), we define Subproblem (Pk) as follows (k ∈ T , where T is a set of teams,
i.e., {1, 2, . . . , 2n}). It is not difficult to see that Problem (P) is feasible if and
only if at least one of (P1), (P2), . . ., and (P2n) is feasible.

Subproblem (Pk)
Task: For a given instance of Problem (P), find a home-away assignment with

2n− 2 breaks in which team k has no breaks and plays at home in slot 1, or
decide that none exists.

The feasibility of Subproblem (Pk) is equivalent to that of Subproblem (P′k)
defined below. In addition, a feasible home-away assignment of (Pk) can be con-
structed from that of (P′k), by substituting home/away for away/home in all even
slots. (More generally, the following statement holds: by the above substitution,
for a given instance an optimal solution of the break minimization problem is
obtained from that of the break maximization problem and vice versa.)

Subproblem (P′k)
Task: For a given instance of Problem (P), find a home-away assignment with

2n(2n − 2) − (2n − 2) breaks in which team k has 2n − 2 breaks and plays
at home in slot 1, or decide that none exists. (In other words, team k plays
only at home and every other team has at most one “non-break.”)

Now we formulate Subproblem (P′k) (k ∈ T ) as the 2-satisfiability problem
(2SAT). Let S be a set of slots, i.e., {1, 2, . . . , 2n − 1}. We define a Boolean
variable xt,s (t ∈ T, s ∈ S) as follows: a variable xt,s is FALSE if team t plays
at home in slot s, otherwise TRUE. Then, an instance of Subproblem (P′k) is
described as follows.



Find xt,s ∈ {TRUE, FALSE} (∀t ∈ T, ∀s ∈ S)
s. t. xk,s = FALSE (∀s ∈ S),

xt,s 6= xτ(t,s),s (∀t ∈ T, ∀s ∈ S),
¬xt,s ∨ xt,s+1 (∀t ∈ T \ {k}, ∀s ∈ S, s < sk,t),
xt,s−1 ∨ ¬xt,s (∀t ∈ T \ {k}, ∀s ∈ S, s > sk,t),
xt,1 ∨ xt,2n−1 (∀t ∈ T \ {k})

where τ(t, s): the opponent of team t in slot s in the given instance;
sk,t: the slot when team k plays team t in the given instance.

Each constraint can be represented as clause(s) with two literals. Thus, this is an
instance of 2SAT; both the number of variables and that of clauses are O(n2).
Since 2SAT with p literals and q clauses can be solved in O(p + q) steps [1],
Problems (P′k) and (P) are solvable in O(n2) and O(n3) steps, respectively.

Finally, we mention a home-away assignment with 2n breaks. A home-away
assignment in which each team has exactly one break is said to be equitable [2],
and it is sometimes preferred to a home-away assignment with 2n − 2 breaks.
We note that the following problem is also solvable in O(n3) steps.

Problem (P̄)
Instance: A timetable of 2n teams without a home-away assignment.
Task: Find a home-away assignment in which each team has exactly one break

for a given instance, or decide that none exists.
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