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Abstract. Ordering exams by simultaneously considering two ordering criteria 
using a fuzzy expert system is presented in this paper.  Combinations of two of 
the three ordering criteria largest degree, saturation degree and largest enroll-
ment are considered.  The fuzzy weight of an exam is used to represent how dif-
ficult it is to schedule.  The decreasingly ordered exams are sequentially chosen 
to be assigned to the last slot with least penalty cost value while the feasibility 
of the timetable is maintained throughout the process.  Unscheduling and re-
scheduling exams is performed until all exams are scheduled.  The proposed al-
gorithm has been tested on 12 benchmark examination timetabling datasets and 
the results show that this approach can produce good quality solutions.  More-
over, there is significant potential to extend the approach by including a larger 
range of criteria. 

1 Introduction 

Examination timetabling is a problem of allocating a timeslot for all exams in the 
problem instances within a limited number of permitted timeslots, in such a way that 
none of the specified hard constraints are violated. In addition to the hard constraints, 
there are often many soft constraints which are desirable (but not essential) to satisfy. 
In most cases, the problem is highly constrained and, moreover, the set of constraints 
which are required to be satisfied is different from one institution to another as re-
ported by Burke et al. [6]. In general, the most common hard constraint is to avoid 
any student being scheduled for two different exams at the same time. 

In practice, each institution usually has a different way of evaluating the quality of 
the developed timetable. In many cases, the quality is calculated based on a penalty 
function which represents the degree to which the constraints are satisfied. 

Over the years, numerous approaches have been investigated and developed for 
exam timetabling. Such approaches include constraint programming, graph colouring, 
and various metaheuristic approaches including genetic algorithms, tabu search, simu-
lated annealing, the great deluge algorithm, and hybridized methods which draw on 



 

two or more of these techniques. Some recent important papers which reflect this 
broad range of activity are [7, 9, 14, 16, 18, 22, 23, 28, 35]. Discussions about other 
approaches can be found in papers by Bardadym [3], Burke et al. [11], Burke and Pet-
rovic [13], Carter [15], Carter and Laporte [17], De Werra [21], Petrovic and Burke 
[29], and Schaerf [33]. 

Approaches which order the exams prior to assignment to a timeslot have been 
discussed by several authors including Boizulmault et al. [4], Brailsford et al. [5], 
Burke et al. [10], Burke and Newall [12], Burke and Petrovic [13] and Carter et al. 
[16]. Carter et al. [16] report the use of four ordering criteria to rank the exams in de-
creasing order to estimate how difficult it is to schedule each of the exams. They con-
sidered largest degree, saturation degree, largest weighted degree and largest enroll-
ment as their ordering criteria. These criteria were used individually each time they 
wanted to order the exams by the selected ordering criteria. Then, the exams were se-
lected sequentially and assigned to a slot that satisfied all specified constraints. If no 
clash free slot was found, backtracking was implemented. The process was continued 
until all the exams were scheduled and a feasible solution was produced. 

Since being introduced by Zadeh in 1965 [36], fuzzy methodologies have been 
successfully applied in a wide range of real world applications. Examples from 
scheduling, planning and timetabling problem domains include fuzzy evaluation func-
tions utilized in generator maintenance scheduling by Dahal, Aldridge and McDonald 
[20], and Abboud et al. [1] who used fuzzy target gross sales (fuzzy goals) to find 
‘optimal’ solutions of a manpower allocation problem, where several company goals 
and salesmen constraints need to be considered simultaneously. Fuzzy methodologies 
have been investigated for other timetabling problems such as aircrew rostering [34], 
driver scheduling [26] and nurse rostering [24]. Furthermore, fuzzy techniques can 
represent and deal with multi-criteria decision making described by Raj and Kumar 
[31], and Lee and Kuo [25].  However, as far as we are aware, fuzzy methods have 
not yet been implemented in the context of examination timetabling. 

In this paper, a fuzzy expert system is used to rank exams based on an assessment 
of how difficult it is to schedule the exams taking into account multiple criteria. By 
considering more than one criteria to rank the exams, it is hoped that rankings are 
produced that better reflect the actual difficulty of placing the exam, as several factors 
are simultaneously taken into account. The fuzzy multiple criteria ordering method 
employed here differs from other multicriteria approaches to examination timetabling, 
such as described in Arani and Lotfi [2], Burke et al.[8], Lotfi and Cerveny [27], and 
Petrovic and Bykov [30]. In our approach, two ordering criteria are simultaneously 
considered to rank the exams, whereas in [2, 8, 27, 30] they used each criterion to 
measure the violation of a corresponding constraint. 

In the following section, the proposed algorithm is explained in detail. Section 3 
describes the experiments carried out and the results obtained. Discussion and conclu-
sions are presented in Sections 4 and 5 respectively.  



 

2 Methods 

In real world decision making, many decisions are required to take into account sev-
eral factors simultaneously under various sets of constraints. Usually it is not known 
which factor(s) need to be emphasized more in order to generate a better decision. 
Somehow a trade off between the various (potentially conflicting) factors must be 
made. The general framework of fuzzy reasoning allows the handling of much of this 
uncertainty. Fuzzy systems usually employ fuzzy sets, which represent uncertainty by 
numbers in the range [0, 1]. These numbers represent the degree of membership with 
which the corresponding elements belong to the set. The precise meaning of member-
ship degrees is not rigidly defined, but is supposed to capture the ‘compatibility’ of an 
element to the notion of the set. 

Fuzzy expert systems are used for representing and inferring with knowledge that 
is imprecise, uncertain, or unreliable. They consist of four main interconnected com-
ponents: an input fuzzifier, a set of rules, an inference engine, and an output processor 
(defuzzifier). Rules which connect input variables to output variables in ‘if … then 
…’ form are used to describe the desired system response in terms of linguistic vari-
ables (words) rather than mathematical formulae. The number of rules depends on the 
number of inputs, outputs, and the system’s behavior goals. Once the rules have been 
established, a fuzzy expert system can be viewed as a non-linear mapping from inputs 
to outputs. A full description of the functioning of fuzzy expert systems is not given 
here for reasons of space, but the interested reader is referred to Cox [19] for a simple 
treatment or Zimmerman [37] for a more complete treatment. 

A number of experiments were carried out in which progressively more sophisti-
cated fuzzy expert systems were created to sort exams prior to a construction tech-
nique was applied as shown in the general framework in Fig. 1. Initially single crite-
rion ordering was implemented to verify the correct functioning of the construction 
algorithm. Next, a fixed fuzzy model that took into account multiple criteria was im-
plemented. Following this, a straight-forward tuning procedure was implemented to 
investigate whether the initial choice of fuzzy model was appropriate and this tuning 
procedure was applied to different combinations of multiple ordering criteria. The fol-
lowing ordering criteria were considered when selecting which exam should be 
scheduled first:  

i. Number of conflict exams, largest degree (LD) 
ii. Number of student enrolled, largest enrollment (LE) 
iii. Number of available slot, saturation degree (SD) 

In each case, two out of the three criteria above were selected as input variables. Each 
of the input variables were assigned three linguistic terms; fuzzy sets corresponding to 
meanings of small, medium and high, referred to as ‘membership functions’. Initially, 
these were chosen arbitrarily to span the universe of discourse of the variable (the 
range over which the variable spans). A rule set connecting these input variables to a 
single output variable, exam_weight, was constructed. Standard Mamdani style fuzzy 
inference was implemented with standard Zadeh (min-max) operators (see [19] or 
[37] for explanations of the standard Mamdani style fuzzy inference). Centroid de-
fuzzification was then utilized to obtain a single crisp (real) value for exam_weight. 
Further detail on the terms and rules used in each case are given in Section 3. 

 



 

Sort unscheduled exams using selected multiple ordering criteria; 
Insert exams into the last timeslot with least penalty; 
While there exist unscheduled exam 

Perform the process for scheduling the unscheduled exams; 
Sort unscheduled exams using selected multiple ordering criteria; 

End while 

Fig. 1. Pseudo code for general framework of sequential construction heuristic 

 
The sequential construction heuristic described by Carter et al. [16], but with a 

modification in the backtracking process, was applied to construct a timetable once 
the exams had been ordered by the fuzzy expert system. The algorithm used is de-
tailed in Fig. 2. 

The developed algorithm required the following steps to assign all exams to a time-
slot. First, the exams were ordered by some criteria in descending order. Then, exams 
were selected sequentially and assigned to the last available timeslot in the list with 
minimum penalty cost. If no clash free timeslot was available, the exam was skipped 
and the process continued with the next exam. The skipped exams were then revisited 
and a process for scheduling the unscheduled exam was performed (see Fig.2). This 
technique is different from the one Carter used because minimum disruption cost was 
not used to select a timeslot for reshuffling the scheduled exams if there was a tie be-
tween several timeslots. Instead, the timeslot was selected randomly from the list of 
timeslots with the same minimum number of scheduled exams that needed to be 
‘bumped back’. 

 
k := number of unscheduled exams; 
For u := 1 to k  

Select exam[u]; 
Find timeslots where exam[u] can be inserted with minimum number 
of scheduled exams need to be removed from the timeslot; 
If found more than one slot with the same number of scheduled ex-
ams need to be removed 

Select a timeslot randomly from the candidate list of slots, ts; 
End if 
c :=  number of exam in timeslot tsu that conflict with exam[u];  
For m := 1 to c 
   Select exam[m]; 

If found another timeslot with minimum cost to move exam[m] 
Move exam[m] to the timeslot; 

else 
Bump back exam[m] to unscheduled exam list; 

End if 
End for 
Insert exam[u] to timeslot tsu; 
Remove exam[u] from unscheduled exam list; 

End for 

Fig. 2. Pseudo code for scheduling the unscheduled exams 

 
A proximity cost function was used to measure the timetable quality. The maxi-

mum capacity for each timeslot was not taken into account. Only feasible timetables 
were accepted and the penalty function was utilized to try to spread out each student’s 
schedule. If two exams scheduled for a particular student are t timeslots apart, the 
weight is set to wt = 25 - t where t ∈ {1,2,3,4,5}. The weight is multiplied by the num-



 

ber of students that sit for both of the scheduled exams. The average penalty per stu-
dent is calculated by dividing the total penalty by total number of students. The fol-
lowing formulation was used (adopted from Burke et al. [9]): 

 

N-1 N

Σ Σ s ij w (pj -pi)minimize i=1 j =i+1

T
 

(1) 

where N is number of exams 
sij is number of student enrolled both exam i and j 
pi is the timeslot where exam i is scheduled 
pj is the timeslot where exam j is scheduled 
T  is total number of student 

and subject to 1��pj – pi �5 

Table 1. Characteristics of the problem 

No. of  Student No. of Exams No. of Student No. of Slots 
CAR-F-92 543 18419 32 
CAR-S-91 682 16925 35 
EAR-F-83 190 1125 24 
HEC-S-92 81 2823 18 
KFU-S-93 461 5349 20 
LSE-F-91 381 2726 18 
RYE-F-92 486 11483 23 
STA-F-83 139 611 13 
TRE-S-92 261 4360 23 
UTA-S-92 622 21266 35 
UTE-S-92 184 2750 10 
YOR-F-83 181 941 21 

 
The algorithm was developed using java based object oriented programming. The 

fuzzy inference engine developed by Sazonov et al. [32] was implemented. The ex-
periments were run on a PC with a 1.8 GHz Pentium 4 and 256MB of RAM. Carter’s 
publicly available exam timetabling datasets were used in the experiments. Table 1 
reproduces the problem characteristics. 

3 Experimental Results 

In this section the various experiments that were carried and the results obtained in 
each case are presented. 



 

3.1 Experiment 1  

In order to test our minor modification to the sequential construction method previ-
ously developed by Carter et al. [16], the algorithm was initially run without imple-
menting fuzzy ordering. That is, in this experiment, the exams in the problem in-
stances were ordered based on a single ordering criterion. All the exams were then 
selected to be scheduled in sequence based on this ordering.  

The results are shown in columns 2, 3 and 4 of Table 2. It can be seen that, as ex-
pected, when compared to Carter’s results (column 5 of Table 3) the algorithm pro-
duced broadly similar results: a slightly better timetable was obtained for the CAR-F-
92 and CAR-S-91 dataset; the other datasets were comparable. 

Table 2. Experimental results for the different ordering criteria that were implemented 

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Dataset LD SD LE LD + LE 
(fixed FES) 

LD + LE 
(tuned FES) 

SD + LE 
(tuned FES) 

CAR-F-92 5.56 5.50 5.03 5.65 4.60 4.56 

CAR-S-91 6.38 5.91 5.90 6.31 5.60 5.29 

EAR-F-83 40.58 49.10 45.88 48.14 38.41 37.02 

HEC-S-92 14.98 14.27 14.94 16.93 12.53 11.78 

KFU-S-93 18.63 18.60 16.46 18.29 16.53 15.81 

LSE-F-91 15.08 13.46 14.52 16.84 12.35 12.09 

RYE-F-92 13.33 15.32 11.97 11.80 11.03 10.35 

STA-F-83 173.09 178.24 171.87 161.21 160.42 160.75 

TRE-S-92 10.98 10.81 9.93 10.36 9.05 8.67 

UTA-S-92 4.48 3.83 4.78 5.16 3.87 3.57 

UTE-S-92 35.19 33.14 28.80 30.54 28.65 27.78 

YOR-F-83 45.60 45.27 43.53 46.41 41.37 40.66 

 
 

3.2 Experiment 2 

In this experiment, the unscheduled exams are ordered using largest degree and larg-
est enrollment by applying fuzzy reasoning as described earlier. The membership 
functions and rules used in this experiment are shown in Figure 3. The choice of these 
membership functions was based on ‘trial and error’ to test how the algorithm would 
work when exams were ordered with the aid of fuzzy reasoning. The results are 
shown in column 5 of Table 2. 



 

This experiment demonstrated that by evaluating two ordering criteria simultane-
ously better timetables can be produced. For CAR-S-91, TRE-S-92 and YOR-F-83 
this multiple ordering criteria technique produced better results than the single largest 
degree ordering criteria in Experiment 1. It also produced better results compared to 
the single saturation degree ordering criteria in STA-F-83, UTE-S-92 and YOR-F-83 
datasets. 
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Fuzzy Rules : 
if largest degree is high and largest enrollment is high then examweight is very high 
if largest degree is high and largest enrollment is medium then examweight is medium 
if largest degree is high and largest enrollment is small then examweight is small 
if largest degree is medium and largest enrollment is high then examweight is high 
if largest degree is medium and largest enrollment is not high then examweight is medium 
if largest degree is small and largest enrollment is high then examweight is medium 

  if largest degree is small and largest enrollment is not high then examweight is very small  
Fig. 3. Fuzzy model for Experiment 2. 

 

3.3 Experiment 3 

As an extension to Experiment 2, it was decided that a restricted form of exhaustive 
search would be used to find the most appropriate shape for the fuzzy terms in the 
fuzzy expert system. There are very many alternatives that may be used in construct-
ing a fuzzy model. For the next two experiments we arbitrarily restricted the search 
based on the fuzzy membership functions as shown in Fig. 4. Triangular shape mem-
bership functions were employed to represent small, medium and high. However, the 
fuzzy model was then altered by moving the point cp along the universe of discourse. 
This point corresponded to the right edge for the term small, the centre point for the 
linguistic label medium and the left edge for the term high. A search was then carried 



 

out to find the best set of cp parameters (there was one for each linguistic variables – 
i.e. a cp parameter for each of the two input variables and the output variable). 

During the search for the optimal fuzzy model, the center point for any of the fuzzy 
variables can take a value between 0.0 and 1.0 inclusively. We use 0.1 increments for 
datasets that have 400 and fewer exams and 0.25 increments are used for datasets that 
have more than 400 exams. In some circumstances, only two linguistics variables are 
applicable for any of the fuzzy variables. As shown in Fig. 5 (a), only the linguistic 
variables medium and high are used when the center point = 0.0. And in Fig. 5 (b), if 
the center point =1.0 only the small and medium linguistic variables are employed. 
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Fig. 4. Membership function for fuzzy linguistic variables 
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(c) 0 < cp <1 

Fig. 5. Range of possible membership function linguistic labels 

 
 
In Experiment 3, largest degree and largest enrollment were used as the fuzzy in-

put variables. The fuzzy rules used are as follows: 
 
Fuzzy Rules: 
if largest degree is high and largest enrollment is high then examweight is very high 
if largest degree is high and largest enrollment is medium then examweight is high 
if largest degree is high and largest enrollment is small then examweight is medium 



 

if largest degree is medium and largest enrollment is high then examweight is high 
if largest degree is medium and largest enrollment is medium then examweight is medium 
if largest degree is medium and largest enrollment is small then examweight is small 
if largest degree is small and largest enrollment is high then examweight is medium 
if largest degree is small and largest enrollment is medium then examweight is small 
if largest degree is small and largest enrollment is small then examweight is very small 
 
The results from Experiment 3 are shown in column 6 of Table 2. It is obvious that 

this experiment produced better results compared with Experiment 2, for all of the 
datasets. In comparison with Experiment 1, all results are better except for the KFU-
S-93 and UTA-S-92 datasets. 

3.4 Experiment 4 

In this experiment saturation degree and largest enrollment were used as the fuzzy in-
put variables. Fuzzy rules were defined as follows: 

 
Fuzzy Rules: 
if largest enrollment is high and saturation degree is high then examweight is medium 
if largest enrollment is high and saturation degree is medium then examweight is high 
if largest enrollment is high and saturation degree is small then examweight is very high 
if largest enrollment is medium and saturation degree is high then examweight is small 
if largest enrollment is medium and saturation degree is medium 

then examweight is medium 
if largest enrollment is medium and saturation degree is small then examweight is high 
if largest enrollment is small and saturation degree is high then examweight is very small 
if largest enrollment is small and saturation degree is medium then examweight is small 
if largest enrollment is small and saturation degree is small then examweight is medium 
 
The results from this experiment are shown in column 7 of Table 2. Except for the 

STA-F-83 dataset, this experiment has generated better results compared to all the 
other experiments.  

4 Discussion and Evaluation 

From Table 2 it can be seen that the initial fuzzy model (Experiment 2) produced 
comparable results to the single criteria ordering (Experiment 1). This indicates that 
care must be taken when applying fuzzy techniques: it is certainly not the case that 
just because it is fuzzy it is necessarily better. In all cases, tuning the fuzzy model 
produces better results, as might be expected. This confirms our hypothesis that si-
multaneous ranking of multiple criteria can produce better results. 

Table 3 shows the performance of our algorithm in comparison with selected re-
cently published results on Carter’s benchmarks. The best result amongst the com-
pared techniques for each dataset is highlighted in bold font. Overall, the performance 
of our algorithm is comparable to the others. However, we are more interested in 



 

comparing our results to Carter’s results [16], because as mentioned in Section 2, we 
adopted their sequential construction heuristic with some modification.  

Basically, there are three differences between these two algorithms. Firstly, a 
search is carried out to find the clash free timeslot with least penalty cost in order to 
assign each exam to a timeslot. If several timeslots are available, then the last avail-
able timeslot in the list will be selected. Here, it was found that the choice of assign-
ing exams to the last available timeslot or the first available timeslot did not make 
much difference, because the main objective was to spread out the student’s timeta-
ble. ‘Side constraints’, such as whether an exam with many students should be sched-
uled earlier, were not considered. Regardless of this, our algorithm will produce a dif-
ferent timetable but with a penalty cost that is almost the same. Meanwhile, Carter 
chooses the first clash free timeslot found in which to assign the exam. 

Secondly, we randomly select a timeslot for reshuffling an exam if several time-
slots are available, whereas Carter used minimum disruption cost to break any ties. 
The effect of these two differences can be seen in the Experiment 1 results. In Ex-
periment 1, a single criterion ordering is used but without fuzzy evaluation. By im-
plementing these two changes, a better timetable for the CAR-F-92 and CAR-S-92 
datasets was produced. The other datasets results are also comparable to Carter’s. 

Table 3. Results Comparison 

Dataset 

Best Fuzzy 
Multiple   
Ordering 
Criteria 

Burke et al. 
[9] 

Caramia et al. 
[14] 

Carter et 
al. [16] 

Casey and 
Thompson 

[18] 

Merlot 
et al. 
[28] 

CAR-F-92 4.56 4.2 6 6.2 4.4 4.3 
CAR-S-91 5.29 4.8 6.6 7.1 5.4 5.1 
EAR-F-83 37.02 35.4 29.3 36.4 34.8 35.1 
HEC-S-92 11.78 10.8 9.2 10.8 10.8 10.6 
KFU-S-93 15.81 13.7 13.8 14 14.1 13.5 
LSE-F-91 12.09 10.4 9.6 10.5 14.7 11 
RYE-F-92 10.35 8.9 6.8 7.3  -  8.4 
STA-F-83 160.42 159.1 158.2 161.5 134.9 157.3 
TRE-S-92 8.67 8.3 9.4 9.6 8.7 8.4 
UTA-S-92 3.57 3.4 3.5 3.5  -  3.5 
UTE-S-92 27.78 25.7 24.4 25.8 25.4 25.1 
YOR-F-83 40.66 36.7 36.2 41.7 37.5 37.4 

The third difference is that we have implemented fuzzy techniques to simultane-
ously evaluate multiple criteria to ranking the exams. As can be seen in Table 3, our 
algorithm produced a better timetable for CAR-F-92, CAR-S-91, STA-F-83, TRE-S-
92 and YOR-F-83 datasets compared to Carter’s results. The best fuzzy results shown 
in column 2 of Table 3 are generated when the best fuzzy model is identified during 
the tuning process. The best fuzzy model for each dataset is presented in Fig. 6 and 
Fig. 7. From these, it can be seen that the membership functions differ in each case – 
i.e. there is no generic fuzzy model which suits all the datasets. 
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Fig. 6. Best fuzzy model for datasets CAR-F-92, CAR-S-91, EAR-F-83, HEC-S-92, 
KFU-S-93 and LSE-F-91 
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Fig. 7. Best fuzzy model for datasets RYE-F-92, STA-F-83, TRE-S-92, UTA-S-92, 
UTE-S-92 and YOR-F-83 

5 Conclusions 

As far as the authors are aware, no other published work has described the exploration 
of fuzzy methodologies for simultaneously ordering exams in the construction of ex-
amination timetables. In this study, we investigated a fuzzy expert system to use mul-
tiple ordering criteria simultaneously in an attempt to better represent the difficulty of 
scheduling exams. Our evaluation indicates that better solutions can be produced 
when exams are ordered by several criteria before the search process starts. This has 



 

confirmed our hypothesis that the exploration of different methodologies to achieve 
multi criteria orderings may be beneficial. The experiments carried out have demon-
strated that the fuzzy tuning employed does improve the performance.  

We are encouraged by these promising initial results and aim to extend this work 
further. Future research avenues may include: 

• investigating other combinations of ordering criteria 
• investigating different sets of fuzzy rules and fuzzy membership functions 
• exploring the use of more sophisticated optimization algorithms when tuning 

these and other fuzzy models 
• testing the algorithms on capacitated benchmark problems 
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