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1   Introduction 

In this paper, we present an improvement of the Grouping Genetic Algorithm (GGA) 
which has been described in [6]. The algorithm has been enhanced with local optimi-
sation techniques which are based on problem-specific heuristics and incorporated 
into the genetic operators. First experiments on well-known benchmark problems on 
examination timetabling show that the new hybrid algorithm (HGGA) produces much 
better results than the original GGA.  

1.1 Examination Timetabling, Graph Colouring and Grouping Problems  

In the examination timetabling problems considered in this paper, given exams have 
to be assigned to a number of periods in such a way that the hard constraints  

(1) No student may have two exams in the same period 
(2) The sum of students taking an exam in the same period must not exceed a 

certain capacity limit.  

are satisfied. In addition, we try to avoid near-clashes of order n, if possible:  

 No student should have to sit two exams which are only n periods apart 
(n=1,2,3,4).   

The basic examination problem in which only the clashing constraint (1) is to be 
satisfied is easily mapped into a graph colouring problem: The exams are represented 
as nodes of a graph, and an edge between two nodes corresponds to constraint (1). 
The nodes have to be coloured in such a way that two nodes connected by an edge 
receive different colours, i.e. the corresponding exams are scheduled to different 
periods.  

Graph colouring is an instance of the family of grouping problems ([7]) which 
consist of partitioning, due to some hard constraints, a set of entities into mutually 

 



disjoint subsets, so-called groups. In graph colouring (in examination timetabling) the 
nodes (exams) are assigned to those groups (colours; periods) in such a way that no 
group contains two adjacent nodes (two conflicting exams).   

1.2 The Grouping Genetic Algorithm 

In our Grouping Genetic Algorithm (GGA) [6], which has essentially been designed 
as proposed by Falkenauer [7], a chromosome is made up of groups as genes. It 
could, for instance, be represented as  

 , { } { } { } { }( )8,6,4,7,3,5,2,1

indicating that exams 1, 2 and 5 are scheduled in the first period, exams 3 and 7 in the 
second, etc.  

The following genetic operators, working on these groups, have been defined:  
For crossover, some randomly chosen groups from one parent are injected into the 

other chromosome. As a result, some groups are not disjoint any more. Hence the 
affected groups of the second parent are deleted, and those exams that afterwards do 
not belong to a group any more are rescheduled using a first fit algorithm. 

There are two mutation operators: The first one simply eliminates one or a few 
groups, chosen at random, and tries to reschedule their exams, applying again the first 
fit algorithm. In the second mutation operator the positions of two randomly chosen 
groups are exchanged.   

A fitness function is used which is based on the heuristic that as many examina-
tions with large numbers of conflicts as possible should be assigned to each period. It 
also penalizes near-clashes, using large weights for near-clashes of low order. 

2   The Hybrid Grouping Genetic Algorithm 

The GGA has been enhanced with two 'sequential' heuristics, the first one mainly 
aiming at improving the search for optimal solutions to mere graph colouring prob-
lems, the other one being used in examination timetabling for the reduction of the 
number of near-clashes of order n. 

Both heuristics are incorporated into the crossover and mutation operators, and 
will be described in the following sections.  

2.1   Mutation and Crossover with Replacement    

The basic GGA had already shown very good results on a wide range of randomly 
generated hard-to-colour graphs. It was even excellent when applied to real-life exam 
timetabling problems, as long as near-clashes were disregarded. 

Nevertheless, we felt that we still could improve its performance by adding new 
heuristics. Inspired by the so-called bin packing crossover with replacement which 
was introduced by Falkenauer [7] in his design of a grouping genetic algorithm for 

 



bin backing problems, we enhanced the mutation and crossover operators described 
in section 1.2 in the following way: 

Prior to the application of the first fit algorithm which is used to reinsert exams of 
eliminated groups, we first check, taking the groups one by one, whether some of the 
(scheduled) exams of the group can be replaced by unscheduled ones of higher de-
gree (i.e. with a larger number of conflicts), without violating the hard constraints.  

As a consequence, some of the previously scheduled exams are unscheduled after 
this replacement, but - as a countermove to that - a number of more difficult-to-assign 
exams are now successfully scheduled. Some of the groups contain more examina-
tions with larger numbers of conflicts than before, and it will be easier now to reinsert 
the remaining unscheduled exams by use of the first fit algorithm.   

2.2   Separating Mutation    

The above described procedure further guides the search for well-filled timeslots and, 
as a consequence, for a timetable using only a low number of periods. When applied 
to real life problems, however, this seems to be counterproductive: The closer exami-
nations with large numbers of conflicts are scheduled together, the more near-clashes 
are likely to occur.  

In order to reduce the number of near-clashes we introduced a further mutation op-
erator as follows: Two groups, G and H say, are chosen at random. Again, the exams 
of group G are rescheduled, but prior to trying to insert them into existing groups a 
new group G' is created and placed between period H and its adjacent period H'. An 
exam e of group G is inserted into G' if no student enrolled in e has to sit any exam in 
period H or H'. Otherwise e is rescheduled using the first fit algorithm, as before. 

In this way, groups H and H' are separated by group G', and if there was a near- 
clash of order 1 before – caused by a student who has to sit exams in the previously 
successive periods H and H'  - this is removed by application of the new operator, 
which we call separating mutation of order 1. In a similar way separating mutation of 
higher order can be defined. 

2.2   Results and Conclusion    

We have performed first experiments on Carter's data set [4]. They clearly show that 
the hybrid version is superior to the original GGA. But the HGGA still does not com-
pare well enough to some other published methods (cf. [1], [2], [3], [5], [8]), and we 
will have to perform further tests before we shall be able to present significant results. 

We still have to check, in particular, which combination of the new operators will 
be best. While mutation with replacement should be frequently used during the first 
iteration steps of the algorithm, an increasing number of separating mutations should 
be performed later in the process. The idea is that first a timetable using as few peri-
ods as possible is produced, regardless of the number of near-clashes. In the second 
phase, however, this 'compact' timetable should be extended to more periods in order 
to allow students to rest for a while before they have to sit their next exam. Therefore 
best settings of the parameters which control the interaction of the operators have to 

 



 

be found, and also the fitness function should be dynamically changed in order to 
support this basic idea.      
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