
Applying Heuristic Methods to Schedule Sports
Competitions on Multiple Venues

E.K. Burke1, D. de Werra2, J.D. Landa Silva1, and C. Raess2

1 Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science and IT, University of Nottingham, UK

{ekb, jds}@cs.nott.ac.uk
2 Chaire de Recherche de Operationnelle

EPFL, Lausanne, Switzerland
{dewerra, raess}@dma.epfl.ch

Abstract. Scheduling sports competitions is a difficult task because it
is often very difficult to construct schedules that are considered fair by
all competitors. In addition, the schedules should also satisfy a consid-
erably large number of additional requirements and constraints. Most of
the sports scheduling problems that have been tackled in the literature
refer to competitions in which a venue is associated to each competi-
tor. In these cases, selecting the venue in which each tie will be played
is not an issue because this is defined by the status, home or away, of
the competitors. Scheduling problems in most sports leagues (football,
baseball, rugby, cricket, etc.) fall into this category because each team
has its own venue. However, many other sports competitions take place
on a set of venues that are neutral to all competitors. This is the case
in some international competitions (such as the football world cup, and
the Wimbledon tennis tournament) and in recreation leagues using a set
of drill stations. In these cases, choosing the venue to play each tie is
part of the scheduling process and this often makes the problem more
difficulty to solve. Here, we propose the application of heuristic methods
for constructing schedules for this type of sports competitions and also
the use of metaheuristics for improving the quality of a given schedule.

1 Problem Description

In the last three decades or so, the automated construction, using computer
techniques, of sports competition schedules has received considerable attention.
Among the approaches that have been proposed there are exact algorithms (in-
cluding methods based on combinatorial design theory) (e.g. [1, 2]) and heuristics
(e.g. [4, 5, 8]). We are interested in the problem in which a set of N teams must
compete on a set of S neutral venues over T timeslots. A feasible competition
schedule should be constructed so that the assignment of venues to the matches
is as balanced and fair as possible. A feasible schedule must satisfy the hard
constraints: only one match can take place on a given venue at a given timeslot,
and each team can compete in exactly one venue at a given timeslot. A partic-
ular case is when the problem is balanced. That is, the number of competitors



N equals the number of timeslots T and it is twice the number of venues S,
i.e. N = T = 2S. Then, each team competes N times and therefore, each team
competes against one of the other teams exactly twice (this can be called the
repeated match). In each of the T schedule timeslots, all teams in the league
must be competing simultaneously. There are three soft constraints that should
be satisfied. First, each team must play against each of the other teams at least
once. Second, each team must compete in each venue exactly twice. Finally, any
pair of teams should not compete against each other more than one time on
the same venue. Then, the problem is to find whether a feasible schedule that
satisfies all the soft constraints exists.

2 Related Work

Urban and Russell tackled the above scheduling problem using integer goal pro-
gramming [7]. They reported optimal results (i.e. perfectly balanced schedules)
for the cases in which N equals 4, 6, 8 and 10. They also reported best-known
results for problems with N equal to 12, 14 and 16. They observed that the
branch-and-bound process could easily find solutions for some cases (e.g. N = 8
or N = 10) while it was unable to find a solution satisfying all goals in other
cases (e.g. N = 6) after a considerable large computation time. They also noted
that the branch-and-bound approach was too time consuming for larger prob-
lems (i.e. N > 10). For those cases, they proposed to run the branch-and-bound
process for a fixed number of iterations or computation time followed by a post-
processing phase that seeks to improve the quality of the schedule (see [7] for
details).

Recently, de Werra et al. designed constructive algorithms to solve some spe-
cific cases of this problem [3]. Specifically, they described constructive approaches
to generate perfectly balanced schedules for five cases:

1. N = 12
2. N = 14
3. N = 2S = 2p where p ≥ 2, i.e. N = 4, 8, 16 . . .
4. N = 2S = 2 mod 8, i.e. N = 10, 18, 26 . . .
5. N = 2S = 4 mod 16, i.e. N = 20, 36, 52 . . .

As noted by Urban and Russell in [7], the combinatorial nature of the problem
limits the applicability of the branch-and-bound approach to small problems
(N ≤ 10). The construction methods designed by de Werra et al. in [3] apply
only to the five specific cases listed above. There are several cases of this problem
for which no optimal solution is yet known (e.g. N = 22). Then, it would be
interesting to find a more general approach that permits to generate perfectly
balanced schedules for a wider number of cases of this problem. Moreover, such
an approach could also be useful to tackle some variants of the problem that
are also of practical interest. For example, the case in which there are fewer
than N/2 venues and therefore, not all teams can compete simultaneously in
each timeslot. Another important case is when a “home” team is required in



each match for administrative purposes. Then, the balance between “home” and
“away” matches must be considered too. All the above motivated our interest
on investigating the application of heuristic techniques to tackle the problem of
scheduling sports competitions on multiple venues. Our initial efforts are focused
on the balanced case, i.e. when N = T = 2S.

3 Heuristic Methods and Preliminary Results

The metaheuristic approach implemented here is shown in pseudocode 1. This
is a hybrid algorithm that was originally proposed to tackle the space allocation
problem in academic institutions [6] and has been adapted for the problem tack-
led here.

Pseudocode 1. The hybrid metaheuristic implemented

1.Generate the initial schedule x.
2. Set ρ ≈ 0.95, α ≈ 0.97, Riter ≈ 0, Rstep ≈ NS, Dstep ≈ 5,
iterations =0, FAmax ≈ 3NS.
3. For Rstep iterations do,

3.1. Find a candidate solution x′ by using the heuristic HLS,

then evaluate x′ and if it is better than x then accept it as the new

current solution.

4. Find a candidate solution x′ using the heuristic HLS.

4.1.Calculate the fitness variation ∆F between x and x′,

if x′ is better than x then accept it as the new current solution.

4.2. If the x′ is not better than x,
4.2.1. If ρ ≤ 0.001 then reject x, make Riter = Riter + 1 and

if (Riter mod Rstep) equals zero then make ρ ≈ 0.95 and Riter = 0.
4.2.2. If ρ > 0.001 and ρ > random[0, 1] then make x = x′,

otherwise reject x′.

4.3. iterations =iterations +1.

4.4. If iterations mod Dstep equals zero then make ρ = ρα.
5. If not better candidate solution x′ was found,

5.1. Increment failed move attempts.

5.2. If failed move attempts > FAmax then apply the heavy

mutation operator to x and make failed move attempts =0.

6. If the termination criterion is satisfied stop, otherwise go to 4.

We have implemented several constructive heuristics in order to generate
initial schedules (Step 1 in pseudoocde 1). The various initialisation heuristics
serve to assess the effect that the quality of the initial solution has on the perfor-
mance of the metaheuristic approach. These constructive heuristics are briefly
described below. We decided to represent a competition schedule using a matrix
M of size N ·S where each cell M(t, s) contains the match (i,j) to be played on
timeslot t at venue s.



Random. First, we generate the list of (N − 1) ·S matches of the form (i, j)
where i 6= j for i, j = 1, 2 . . . N . Then, we generate S repeated matches of the
form (i, i+1) for i = 1, 3 . . . N−1. Finally, each of the N ·S matches is scheduled
on a cell M(t, s) selected at random. This heuristic generates many infeasible
solutions, i.e. schedules with the same team scheduled in more than one venue
in the same timeslot.

Improved Random. This is very similar to the previous heuristic, but when
scheduling each match, the first free location M(t, s) that keeps the solution fea-
sible is selected if such M(t, s) exists. Otherwise, any random location is used to
schedule the match. This heuristic produces initial schedules of higher quality
that the previous heuristic, but of course, is more time consuming.

Progressive Feasible. This is a general constructive heuristic that gen-
erates feasible initial schedules using combinatorial design. Two variants are
implemented, when S is even and when S is odd. The approach splits the teams
into two groups C1 = [1 . . . N/2] and C2 = [(N/2) + 1 . . . N ]. Then a partial
schedule is constructed containing all the external matches, i.e. ties between a
team in C1 and a team in C2. The schedule is completed by scheduling all the
internal matches, i.e. ties between two teams in the same group.

The heuristic HLS is used to explore the neighbourhood of the current so-
lution (Steps 3 and 4 in pseudocode 1). This heuristic uses one type of neigh-
bourhood structure, the swap between two matches selected at random. The
HLS heuristic selects the best of a number of k ≈ (N · S)/3 swap moves. A
heavy mutation operator is implemented in order to disturb the schedule if no
improvements have been achieved for a number of iterations (Step 5.2 in pseu-
docode 1). First, this operator identifies those ties that contribute the most to
the cost of the current solution. Then, these ties are removed from the schedule
(a maximum of (N · S)/5 ties are permitted to be unscheduled in this way).
Finally, in random order, each of the scheduled ties is re-scheduled to the best
available timeslot until the schedule is complete.

We have carried out experiments applying the algorithm described above
for problems up to N = 20. The algorithm is capable of producing perfectly
balanced schedules for problems of size N equal to 8,10 and 12. It also finds
the optimal solutions for the cases where N equals 4 and 6. For the rest of the
cases, so far, the algorithm is able to generate feasible schedules with low cost
(between 8 and 18).

References

1. de Werra D.: Minimizing irregularities in sports schedules using graph theory. Dis-
crete applied mathematics. Vol. 2, 217-226, (1982).

2. de Werra D.: Some models of graphs for scheduling sports competitions. Discrete
Applied Mathematics. Vol. 21, 47-65, (1988).



3. de Werra D., Ekim T., Raess C.: Construction of sports schedules with multi-
ple venues. Internal report. Chaire de recherche operationnelle, EPFL, Lausanne
Switzerland, November, (2003).

4. Ferland J.A., Fleurent C.: Computer aided scheduling for a sports league. INFOR
29, 14-24, (1991).

5. Henz M.: Scheduling a major college basketball conference - revisited. Operations
research, Vol. 49, No. 1, 163-168, (2001).

6. Landa Silva J.D.: Metaheuristic and multiobjective approaches for space allocation.
PhD thesis. School of computer science and IT, University of Nottingham, UK
(2003).

7. Urban T.L., Russell R.A.: Scheduling sports competitions on multiple venues. Eu-
ropean Journal of operational research. Vol. 148, 302-311, (2003).

8. Wright M.: Timetabling county cricket fixtures using a form of tabu search. Journal
of the operational research society. Vol. 45, No. 7, 758-770, (1994).


