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Abstract. Metaheuristic approaches to examination timetabling problems are 
usually split up into two phases: initialisation phase in which a heuristic is em-
ployed to construct an initial solution and improvement phase which employs a 
metaheuristic. Different hybridisations of metaheuristics with sequential heuris-
tics are known to lead to solutions of different quality. A Case Based Reasoning 
CBR methodology has been developed for selecting an appropriate hybridsation 
of Great Deluge metaheuristic with a sequential construction heuristic. In this 
paper we propose a new similarity measure between two timetabling problems 
that is based on fuzzy sets. The experiments were performed on a number of 
real-world problems and the results were also compared with other state-of-the-
art methods. The results obtained show the effectiveness of the developed CBR 
system.   

1   Introduction 

Examination timetabling is an important and difficult task for educational institutions 
since it requires expensive human and computer resources and has to be solved sev-
eral times every year. Timetabling can be defined to be the problem of allocating a set 
of examinations into a given set of classrooms over a limited number of time periods 
in such a way as to generate no conflicts between any two examinations. For example, 
no student should be required to attend two examinations at the same time and no 
student should have two examinations on the same day.  

The timetabling problem can be represented as an undirected weighted graph where 
vertices represent examinations, while edges represent conflicts between examinations 
(i.e. an edge connects examinations with common students). To both vertices and 
edges weights are assigned that correspond to the number of students enrolled in the 
examinations and the number of students enrolled in two examinations that are in 
conflict, respectively. For illustration purposes, a simple timetabling problem (with 4 
examinations) is shown in Figure 1. For example, the weight of Math is 30 because 30 
students are enrolled in this course. The edge connecting AI and PA1 is assigned 
weight 9 because there are 9 students who are enrolled in both examinations. The 
timetabling problem is closely linked to the graph colouring problem [42], which is 
concerned with the colouring of the vertices in such a way so that no two adjacent 



vertices are coloured by the same colour. In the context of examination timetabling, 
colours correspond to time periods. In Figure 1, it can be seen that at least 4 different 
time periods are required to solve the problem since no two examinations which are in 
conflict with each other should be scheduled in the same time period. 
 

 

 

 

 

Figure 1. A simple example of examination timetabling problem 
Both the examination timetabling problem and the graph colouring problem are 
known to be NP-complete [22]. However, the examination timetabling problem has an 
additional wide variety of hard and soft constraints [14]. Hard constraints are those 
that must be completely satisfied. Solutions which do not violate hard constraints are 
called feasible solutions. Soft constraints are not essential to the feasibility of a time-
table, but their satisfaction is highly desirable. In practice, the quality of an examina-
tion timetable is evaluated by some measure of satisfaction of soft constraints since it 
is usually impossible to fully satisfy all of them. A thorough review of the variety of 
constraints imposed on examination timetabling can be seen in [4]. 

1.1   Heuristics for Examination Timetabling  

The complexity and the large size of the real-life university examination timetabling 
problems required development of different heuristics which were successfully em-
ployed for their solving over the last forty years. Early research [13, 21] was focused 
on sequential heuristics for solving graph colouring problems. The main idea of these 
heuristics is to schedule examinations one by one, starting from the examination which 
is evaluated as the most “difficult” for scheduling. Therefore, different heuristics 
measure the “difficulty” of each examination in different ways. The drawback of these 
heuristics is that they have different performance on varied problem instances [17].  

In recent years, there has been an increased interest in application of metaheuristics 
to examination timetabling problem solving because these techniques can take into 
consideration soft constraints and are usually able to generate more satisfactory solu-
tions than sequential heuristics alone. In practice, timetabling problems are usually 
solved by a two phase approach that consists of initialisation and improvement phase. 
In the first phase, an initial solution is iteratively constructed by using an appropriate 
sequential heuristic. The improvement phase gradually improves the initial solution by 
using a metaheuristic such as simulated annealing [25, 30, 40], memetic algorithm [7], 
GRASP [20] and tabu search [23, 43]. However the performance of some metaheuris-
tics is known to be highly dependent on the parameter values. For example, it is well 
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known that the settings of the cooling parameters have a great importance to the suc-
cessful application of simulated annealing [40]. Furthermore, the performance of 
many approaches may vary from one problem instance to another, because they were 
developed specifically for solving one particular class of real world problems [3]. 

In practice, a timetable administrator needs to make a great effort to select the ap-
propriate (successful) hybridisation of a metaheuristic with a sequential heuristic and 
“tailor” the chosen heuristics by utilising the domain-specific knowledge to obtain a 
preferred solution for a given problem. Recently, the development of more general 
timetabling approaches that are capable of solving a variety of problems with different 
characteristics equally well, has attracted the attention of the timetabling community. 
In particular, the research into hyper-heuristics for examination timetabling gave 
promising results. Hyper-heuristics is defined as ‘the process of using (meta-) heuris-
tics to choose (meta-)heuristics to solve the problem in hand’ [5]. Terashima-Marín, 
Ross, and Valenzuela-Rendón [39] introduced an evolutionary approach as a hyper-
heuristic for solving examination timetabling problems. In their approach, a list of 
different sequential heuristics, parameter value settings, and the conditions for swap-
ping sequential heuristics are encoded as chromosomes. The timetable is built by 
using the best chromosome founded by a genetic algorithm. Burke, Kendall, and 
Soubeiga [6] proposed a hyper-heuristic for timetabling problems in which the selec-
tion of heuristics is controlled by a Tabu Search algorithm.     

1.2 Case-Based Heuristic Selection 

Case Based Reasoning (CBR) is an artificial intelligence methodology which is an 
effective alternative to traditional rule-based systems. It is in particular useful for 
generating intelligent decisions in weak-theory application domains [18, 28, 41]. CBR 
stems from the observation that similar problems will have similar solutions [29]. 
Rather than defining a set of “IF THEN” rules or general guidelines, a CBR system 
solves a new problem by reusing previous similar problem solving experience, stored 
as cases in the case base. In CBR, a new input problem is usually solved by four steps: 
retrieve a case that is the most similar to the new problem, reuse and revise the solu-
tion of the retrieved case to generate a solution for the new problem, and retain the 
new input problem and its solution as a new case in the case base. 

In the domain of scheduling, there have been some attempts to resort to CBR for 
achieving the intelligent heuristic selection so that the flexibility and robustness of 
scheduling is enhanced. Current CBR systems for heuristic selection fall into two 
categories: algorithm reuse and operator reuse. The basic underlying assumption of 
the CBR systems in the first category is that it is likely that an approach proved to be 
effective for solving a specific problem will be also effective for solving a similar 
problem. In these CBR systems, a case contains a problem representation, and an 
algorithm known to be effective for its solving. Schmidt [38] proposed a CBR frame-
work to choose an appropriate algorithm for a given production scheduling problem. 
Schirmer [37] designed a similar CBR system for solving project scheduling problems 
and showed that the CBR system outperformed a number of metaheuristics.  



The CBR scheduling systems in the second category iteratively reuse the operators 
for solving a new input problem. A case in these systems describes a context in which 
a previously used scheduling operator proved to be successful. Miyashita and Sycara 
[31] built a CBR system called CABINS for solving job scheduling problems in which 
sub-optimal solutions were improved by iteratively employing a number of move 
operators, selected by CBR. Petrovic, Beddoe, and Berghe [32] developed a CBR 
system for nurse rostering problems in which the constraint satisfaction procedure was 
driven by iterative application of the scheduling repair operators employed in previ-
ously encountered similar situations. Burke, Petrovic, and Qu [12] proposed a novel 
case based hyper-heuristic for solving timetabling problems. A timetable was itera-
tively constructed by using a number of heuristics, which were selected by a CBR 
controller.   

In general, the CBR systems’ effectiveness depends on the proper definition of the 
similarity measure, because it determines which case will be used for solving a new 
input problem. In the current CBR scheduling systems for heuristic selection, cases 
are usually represented by the sets of attribute-value pairs, while the similarity be-
tween two cases are calculated as the distance between their attribute sets. The attrib-
utes and their weights can be set either empirically [31, 32, 38] or by employing 
knowledge discovery methods [12].  

The objective of our research is to raise the level of generality of metaheuristic ap-
proaches to examination timetabling problems. A CBR system [34, 35] based on algo-
rithm reuse was developed which produced high quality solutions for a range of dif-
ferent examination timetabling problems. The CBR system selected an appropriate 
sequential heuristic for the initialisation of Great Deluge algorithm (GDA). GDA has 
been chosen due to its simplicity of use in terms of required parameters and high qual-
ity results that it produced for examination timetabling problems. It has been shown 
that sequential heuristic selected for the initialisation phase had a great impact on the 
quality of the final solution [35]. In addition, a sequential heuristic which provided a 
“good” starting point for GDA search in solving a particular timetabling problem, was 
proved to be good for GDA initialisation in solving a similar timetabling problem. 

Our research is focused on the application of sequential heuristics for the initialisa-
tion phase of GDA. In the CBR system developed, a case consists of a description of 
an examination timetabling problem and the sequential heuristic that was used to con-
struct a good initial solution for GDA applied to the problem. The selection of the 
sequential heuristic for a new input problem comprises the following steps. The simi-
larity between the new input problem and each problem stored in the case base is 
calculated. A case which is the most similar to the new input problem is retrieved, and 
the associated sequential heuristic of the retrieved case is used for GDA initialisation 
for a new input problem.  

The paper is organised as follows. Section 2 provides a brief introduction to GDA 
and different sequential heuristics that are used for the initialisation phase. Section 3 
describes briefly 2 different similarity measures based on weighted and unweighted 
graph representation of timetabling problems, and introduces a new fuzzy similarity 
measure. In this paper, we discuss different representations of timetabling problems 
and corresponding similarity measures. The first representation takes into considera-
tion the number of students involved in examinations and uses weighted graph repre-



sentation of the timetabling problem [34]. The second representation does not con-
sider number of students and uses unweighted graph representation [35]. We propose 
a new similarity measure based on weighted graph representation, which instead of 
using crisp number of students involved in the conflicts uses linguistic terms (low, 
medium, high) to evaluate the importance of conflicts between two examinations. 
Fuzzy sets are used to model these linguistic terms. Section 4 briefly introduces the 
retrieval process in our CBR system. Section 5 presents a series of experiments on 
benchmark problems that were carried out to evaluate the performance of the new 
CBR system. The final conclusions are presented in Section 6. 

2 Great Deluge Algorithm and Sequential Heuristics 

Great Deluge Algorithm (GDA) is a local search method proposed by Dueck [20]. 
Compared to the well known simulated annealing (SA) approach [26], GDA uses a 
simpler acceptance rule for dealing with the move that leads to a decrease in the solu-
tion quality. Such a worse intermediate solution can be accepted if the decrease of the 
solution quality is smaller than a given upper boundary value, referred to as ‘water-
level’. Water-level is initially set to be the penalty of the initial solution multiplied by 
a predefined factor. After each move, the value of the water-level is decreased by a 
fixed rate, which is computed based on the time that is allocated for the search (ex-
pressed as the total number of moves). One important characteristic of GDA is that 
better solutions could be obtained with the prolongation of the search time of the algo-
rithm [2]. This may not be valid in other local search algorithms in which the search 
time cannot be controlled.  

A variety of sequential heuristics can be used to construct initial solutions for GDA. 
Five different heuristics are used in this research: (1) Largest Degree which schedules 
examinations with the largest number of conflicts first, (2) Largest Enrollment which 
priorities for scheduling examinations with the largest student enrolment, (3) Largest 
Colour Degree which prioritises examinations with the largest number of conflicts that 
they have with already scheduled examinations, (4) Largest Weighted Degree which 
estimates the difficulty of scheduling of each examination by the weighted conflicts, 
where each conflict is weighted by the number of students who are enrolled in both 
examinations, (5) Least Saturation Degree schedules examinations with the least num-
ber of available periods for placement first. They can be further hybridised with Maxi-
mum Clique Detection [24], Backtracking [28], and Adding Random Elements [8]. In 
total, 40 different sequential heuristics are investigated. The details of these heuristics 
are given in [35]. 

3 Similarity measures for examination timetabling problems 

A properly defined similarity measure has a great impact on the CBR system. On the 
other hand similarity measure is tightly connected with the representation of the cases. 
In this section we will briefly introduce two different similarity measures between 



examination timetabling problems based on different graph representations, which we 
investigated in our previous research work. A new similarity measure will be intro-
duced next which addresses some deficiencies of the previous ones. 

3.1 Similarity measure based on weighted graph representation 

A timetabling problem is represented by an undirected weighted graph G = (V, E, α, 
β), where V is the set of vertices that represent examinations, E ⊆ V ×V is the finite 

set of edges that represent conflicts between examinations, α : Va
+

Ν assigns a posi-
tive integer weight to each vertex that corresponds to the number of students enrolled 

in the examination, β : Ea
+

Ν is an assignment of weight to each edge which corre-
sponds to the number of students enrolled in two examinations that are in conflict. 

The similarity measure between a new input problem Gq = (Vq, Eq, αq, βq) and a 
problem stored in the case base Gs = (Vs, Es, αs, βs) is based on the graph isomor-
phism, which is known to be a NP-complete problem. An isomorphism is presented by 
a vertex-to-vertex correspondence f: Vq → Vs which associates vertices in Vq with 
those in Vs. In our notation, vertices and edges of graph Gq are denoted by Latin let-
ters, while those of graph Gs are denoted by Greek letters.  

The similarity degree between two vertices, a ∈ Vq and χ ∈ Vs determined by the 
correspondence f is denoted by DSf (a, χ) and calculated in the following way: 

 
 
 
 
Similarly, DSf  (x, γ) represents the similarity degree between two edges determined 

by the correspondence f, where x = (a, b) ∈  Eq and γ = (χ, δ) ∈  Es and is calculated as 
follows: 

 
 
 

 
The label φ is used to denote an extraneous vertex or edge in a graph, which is not 

mapped by the correspondence f. DSf (a, φ), DSf ( φ, χ), DSf ((a, b), φ) and 

)),(,( δχDS f φ  are set to be equal to 0.  

Finally, the similarity degree SIM1f (Gq, Gs) between the graphs Gq and Gs deter-
mined by the correspondence f is calculated in the following way: 
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 Min(αq(a), αs(χ)) If f (a) = χ 

 0   otherwise                             (1) 
DSf  (a, χ) = 

Min(βq(x), βs(γ)) If f (a) = χ and f (b) = δ 

0   otherwise                           (2) 
DSf  (x, γ) = 
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γ
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Note that the value of DSf (Gq, Gs) ∈  [0, 1] is subject to correspondence f. The task is 
to find the correspondence f that yields as high value of DSf (Gq, Gs) as possible.   

The results obtained using weighted graph representation and described similarity 
measure are given in [34] (a normalisation of SIM1f (Gq, Gs) namely Mv and Me are 
calculated here differently than in [34] due to the changes in the retrieval process 
which will be described in section 4).  

3.2 Similarity measure based on unweighted graph representation 

A timetabling problem is represented by a graph G = (V, E). The numbers of students 
who are sitting examinations and are involved in examination conflicts are not taken 
into consideration.  

The similarity degree DSf (a, χ) between two vertices in Gq and Gs determined by 
the correspondence f is calculated in the following way: 
 
 
 

 
Similarly, the calculation of the similarity degree DSf  (x, γ) between two edges de-

termined by the correspondence f, where x = (a, b) ∈  Eq and γ = (χ, δ) ∈  Es, is given 
in (9). 
 
 
 

 
In such a definition of similarity between two timetabling problems a mapped pair 

of vertices/edges in two graphs contributes to the similarity by a constant value 1 
(independently from a number of students involved in the mapped vertices/edges). 
Finally, the similarity degree SIM2f (Gq, Gs) between Gq and Gs determined by the 
correspondence f is calculated in the following way: 
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Mv = Min (|Vq|, |Vs|)        (13) 

 1   If f (a) = χ 

 0   otherwise                             (8)
DSf  (a, χ) = 

1   If f (a) = χ and f (b) = δ 

0   otherwise                           (9) 
DSf  (x, γ) = 



 Me = Min (|Eq|, |Es|)         (14) 

where |V| and |E| denote the cardinality of the sets V and E, respectively. Experimental 
results show that the similarity measure SIM2 on average outperforms SIM1 on 
benchmark problems established within university timetabling community [35].  

 

3.3 Fuzzy similarity measure based on weighted graph representation 

The similarity measure SIM1 is investigated further. In order to find a case in the case 
base that is similar to the new timetabling problem, i.e. to establish a “good” isomor-
phism between two graphs, two issues are considered. Firstly to find a “good” map-
ping between vertices/edges of the new timetabling problem and the one stored in the 
case base. Secondly, weights of the vertices/edges should have equal or similar values. 
However, it was noticed that in some situations the similarity measure SIM1 will give 
priority to a graph with less similar structure to the new input problem but with the 
same (high) weights of the corresponding vertices/edges over a graph with more simi-
lar structure but different weights of the corresponding vertices/edges. 

To illustrate this observation let us consider three timetabling problems whose 
structures are given in Figure 2: a new input problem P and problems A and B which 
are stored in the case base. Let us suppose that the established graph isomorphism(s) 
associates vertices in P and those in A (B) that have the same examination names. The 
similarities between P and A and B are given in Table 1.  

 
 
 
 
 
 
 
 
 
 

 

Figure 2. New problem P and the case base with cases A and B 

Table 1. Similarity between timetabling problems P and A, B, by similarity measure SIM1 

Graphs Fv Fe Mv Me SIM1 (P, *) 

P and A 30+30+30+30=120 2+5+1+1+1+1=11 Min (120, 120)=120 Min (15,20)=15 (120+11)/ (120+15)=0.970 

P and B 30+30+30+30=120 2+1+9=12 Min (120, 120)=120 Min (15, 20)=15 (120+12)/ (120+15)=0.977 

 
Similarity measure SIM1 evaluates case B to be more similar (although slightly) to 

the new problem P than the case A. Obviously, following the definition of similarity 
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SIM1 the weights of the corresponding edges of P and B that are equal contribute 
more to the similarity than the corresponding edges of P and A which do not have the 
same weights. However, the graph P has the same structure as graph A, but is structur-
ally very different to graph B. These observations motivated the definition of the new 
similarity measure SIM3 to improve the effectiveness of the previously developed 
CBR system [34] [35]. This similarity measure does not consider vertex weights but 
only edge weights because they indicate the size of the conflict between the examina-
tions. The corresponding edges will still contribute to the similarity between two 
graphs, but their contribution need to be smaller than their weights. The procedure for 
calculation of the contribution of the edge weights to the similarity measure consists of 
two steps:  
 
(I) The corresponding edges of the two graphs are classified to sets: Low 
Weight, Medium Weight and High Weight. In order to avoid a rigid definition of strict 
boundaries of these sets, fuzzy sets [44, 45] are used for their modelling. Unlike clas-
sical sets in which each object is either a member or not a member of a given set, a 

fuzzy set A
~

 defined on a universe of discourse U is characterised by a membership 
function )(~ xu A ∈ [0, 1] that assigns to each object x ∈  U a degree of membership of x 

in A
~

. The membership functions for three fuzzy sets Low Weight ( 1
~

W ), Medium 

Weight ( 2
~

W ) and High Weight ( 3
~

W ) are given in Figure 3.   
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Figure 3. Membership functions defined for fuzzy sets Low Weight, Medium Weight, High 
Weight 

The parameters a, b, c, d, e are defined in the following ways. The parameter a de-
fines the lower bound of the set Low Weight and is set to be 1 (weight of edges are 
positive integers). The parameter b is calculated as mean value of all edge weights in 
the graph: 

b = 
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∑
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iw
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The assumption is that the edges whose weight is smaller than the mean weight 
have high degree of membership to Low Weight. Parameter e is set to be the maxi-
mum edge weight in the graph: 

e = )(Max xβ
Ex∈

     (16) 

Parameters c and d are set to divide the [b, e] interval into equal sizes.  

c = b + 
3

be −
 = 

3

2 eb +
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3

2 be −
 = 

3

2eb +
                   (18) 

 
The result of the step (I) a classification of the corresponding edge weights in the 

established graph isomorphism is a triplet ( ))((~ xβu eightwLow , ))((~ xβu eightwMedium , 

))((~ xβu eightwHigh ) which denotes a membership degree of the edge x to three fuzzy 

sets: low weight, medium weight and high weight.  
 
(II) Based on the classification obtained in step (I) the weight of the edge is as-
signed a real number Wx which determines its contribution to the similarity measure 
between two graphs. Experiments indicated that real number should not be greater 
than average edge weight in the graph. It is calculated using the formula given in (19): 

Wx = 
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where h1 is set to be 1; h2 is set as the mean of h1 and h3; h3 is set as the mean weight 
of all edges’ weights of the graph of the new input timetabling problem. 

The similarity degree between two vertices a and χ on the correspondence f is de-
fined as follows:  
 
 
 

The similarity degree between two edges x and γ, where x = (a, b) ∈  Eq and γ = (χ, 
δ) ∈  Es, on the correspondence f is denoted by DSf  (x, γ). 
 
 
 
 
where Wx and Wγ are the new edge weights for edges x and γ, respectively. 

The similarity degree SIM3f (Gq, Gs) between two undirected weighted graphs Gq 
and Gs on the correspondence f is calculated as: 
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where 

1, If f (a) = χ 

0, otherwise                          (20) 
DSf  (a, χ) = 

Min (Wx, Wγ),        If f (a) = χ and f (b) = δ 

0,   otherwise                         (21) 
DSf  (x, γ) = 
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 Mv = Min (|Vq|, |Vs|)     (25) 

Me = Min ( ∑
∈ Eqx

xW , ∑
∈ Esγ

γW )    (26) 

where Mv and Me are the maximum values that Fv and Fe can take, respectively. 
The procedure for calculation of the similarity between case P and cases A and B 

from the case base is illustrated by the example given in Figure 2. The calculation of 
“new weights” of edges with which they will contribute to the similarity measure are 
given in Table 3, while Table 4 presents the calculation of new similarities between 
the cases P and A and B. According to this new similarity measure, case A is more 
similar to case P than case B.  

Table 3. Calculation of “new weights” in graphs P, A and B 

Problem P Case A Case B DSf(x, γ) DSf(x, γ) 
Edge 

Weight Step(I) Step(II) Weight Step(I) Step(II) Weight Step(I) Step(II) 
x∈ EP 
γ∈ EA 

x∈ EP 
γ∈ EB 

(PR1, AI) 2 (1, 0, 0) 1 4 (0, 0.8, 0.2) 1.9 2 (1, 0, 0) 1 1 1 
(PR1, Math) 1 (1, 0, 0) 1 2 (1, 0, 0) 1 -- -- -- 1 0 
(PR1, PA1) 1 (1, 0, 0) 1 3 (1, 0, 0) 1 9 (0, 0, 1) 2.5 1 1 
(PA1, Math) 1 (1, 0, 0) 1 3 (1, 0, 0) 1 -- -- -- 1 0 

(PA1, AI) 9 (0, 0, 1) 2.5 5 (0, 0, 1) 2.5 9 (0, 0, 1) 2.5 2.5 2.5 
(AI, Math) 1 (1, 0, 0) 1 3 (1, 0, 0) 1 -- -- -- 1 0 

Sum 15  7.5 20  8.4 20  6 Fe = 7.5 Fe = 4.5 

Table 4. Similarity between timetabling problem P and A, B, by the new similarity measure 
SIM3 

Similarity Fv Mv Fe Me SIM3 (P, *) 

P and A 4 4 7.5 Min (7.5, 8.4) = 7.5 (4+7.5) / (4+7.5) = 1.0 

P and B 4 4 4.5 Min (7.5, 6) = 6 (4+4.5) / (4+6) = 0.85 

4 Retrieval process 

A case base may contain a large number of cases. The retrieval process of the CBR 
system has to establish a graph isomorphism between a new problem and all cases in 
the case base. In order to enable the faster retrieval the filtering phase is introduced 
which retrieves the subset of cases from a case base using a set of features, that we 
refer to as shallow properties, and that reflect the size and the complexity of the prob-
lem: f1−number of examinations, f2−number of enrolments, f3−number of time periods 



available and f4−the density of the conflict matrix (calculated as the ratio of the num-
ber of examinations in conflict to the total number of examinations). 

The nearest neighbour formulation is used to calculate the similarity degree of two 
cases based on the shallow properties, represented by the feature sets Fq and Fs:  

SIM shallow (Fq, Fs) = 1 ∑−
=

n

i isiq ffdistance
n 1

2
),(

1
  (27) 

where n is the number of features, 
iqf and 

isf are the values of ith feature in Fq and 

Fs, respectively, and the distance between two feature values 
iqf and 

isf is computed 

as:  

iminimax

isiq

isiq ff

ff
f ,fdistance

−

−
=)(    (28) 

the values 
imaxf and  

iminf are the maximum and minimum values of the ith feature 

recorded in the case base. 
The cases whose similarity with the new problem is greater than the predefined 

threshold (empirically set to be 0.6) are passed to Tabu search algorithm [33] which 
searches for the best graph isomorphism SIM1 in terms of defined similarity measures 
(SIM1, SIM2 or SIM3) between the new problem and the retrieved subset of cases. 
Finally, the general similarity measure is calculated between the new problem Cq and a 
case Cs from the subset of cases, using formula given in (29). 

 
SIM (Cq, Cs) = SIM shallow (Fq, Fs) · SIM f (Gq, Gs)  (29) 

5 Experimental Results 

The experiments were performed on a number of real-world examination problems 
from different universities that has been collected and used as benchmark problems. 
The aims of the experiments were: 

 
• To compare different similarity measures. 
• To investigate whether the new similarity measure can enable retrieval of the 

most effective sequential heuristics for the benchmark problems.   
• To evaluate the new CBR system performance by comparing our approach with 

the other state-of-the-art approaches to examination timetabling. 
 
The benchmark problems are available from ftp://ftp.mie.utoronto.ca/pub/carter/testpr 
ob/. Their characteristics are shown in Table 5.  

 
 



Table 5. Examination timetabling Benchmark problems 

Data Institution 
Periods Number of 

Exams 
Number of 
Students 

Number of 
Enrolments 

Density of 
Conflict Matrix 

Car-f-92 Carleton University, Ottwa 32 543 18,419 55,522 0.14 

Car-s-91 Carleton University, Ottwa 35 682 16,925 56,877 0.13 

Ear-f-83 
Earl Haig Collegiate Institute,
Toronto 

24 190 1,125 8,109 0.29 

Hec-s-92 
Ecole des Hautes Etudes Commer-
cials, Montreal 

18 81 2,823 10,632 0.20 

Kfu-s-93 King Fahd University Dharan 20 461 5,349 25,113 0.06 

Lse-f-91 London School of Economics 18 381 2,726 10,918 0.06 

Rye-s-93 Ryeson University, Toronto 23 486 11,483 45,051 0.07 

Sta-f-83 
St Andrew’s Junior High School,
Toronto 

13 139 611 5,751 0.14 

Tre-s-92 
Trent University, Peterborough,
Ontario  

23 261 4,360 14,901 0.18 

Ute-s-92 
Faculty of Engineering, University 
of Toronto 

10 184 2,750 11,793 0.08 

Ute-s-92 
Faculty of Engineering, University
of Toronto 

10 184 2,750 11,793 0.08 

Yor-f-83 
York Mills Collegiate Institute,
Toronto  

21 181 941 6,034 0.27 

 
The cost function for these problems takes into consideration the spread of stu-

dent’s examinations. The cost function was adopted in the research on university ex-
amination timetabling and enables comparison between different timetabling ap-
proaches. It can be described by the following formula [16]: 

ssw
2

32= ,  s ∈  {1, 2, 3, 4, 5}   (30) 

where ws is the cost given to a solution whenever a student has to sit in two examina-
tions scheduled s periods apart from each other. Experiments were run on a PC with a 
1400 Mhz Athlon processor and 256 MB RAM. 

5.1 Case Base Initialisation 

In our experiments, the initial case base was seeded with a number of examination 
timetabling problems that were randomly generated more details [35]. Seeding prob-
lems differ in three parameters: the number of examinations (n), the number of stu-
dents (s), and the density of the conflict matrix (d). Three seeding problems were 
created for each combination of these parameters, which are random variables with a 
normal distribution where mean of n ∈  {100, 200, 300, 400}, mean of s ∈  {10*n, 
20*n}, and mean of d ∈  {0.07, 0.15, 0.23}. For each n, s and d, the proportion of the 
standard deviation and the mean was set as 0.05. Thus, 72 (3*4*2*3) different seeding 
problems were obtained for the case base.  

In order to find the best initialisation heuristic for each seeding problem, GDA ini-
tialised by each sequential heuristic was run for 5 times by 20*106 iterations (this 



value was set empirically), while the ‘water-level’ was set to 1.3 (this value is taken 
from [10]). These values for the number of iterations and for the water-level will be 
employed in most of the experiments presented in this paper. Finally, three case bases 
were established: the small, the middle and the large case base with 24, 48 and 72 
cases, respectively. 

5.2 Evaluation of Similarity Measures 

The purpose of this set of experiments is to evaluate the effectiveness of the proposed 
similarity measure SIM3. This new similarity measure is also compared with the simi-
larity measures SIM1 and SIM2.  

Having established three case bases and defined three different similarity measures, 
each combination of a case base and a similarity measure was employed to choose a 
sequential heuristic for each of the twelve benchmark problems. We adopted the 
method described in [35] to evaluate whether the retrieved sequential heuristic is ef-
fective for the benchmark problem. For each benchmark problem, GDA was run 5 
times initialised by each sequential heuristic. After that sequential heuristics were 
sorted in ascending order by the average final solution cost obtained. The rank of the 
sequential heuristic H for the problem P is denoted by R(H, P). 

The System Effectiveness Degree SED(P) indicates the distance between the 
sequential heuristic used in the case retrieved from the case base denoted by HCB and  
the heuristic Hbest which is the best for GDA initialisation for the benchmark problem 
P (R(Hbest, P)=1). It is calculated as:  

1

1),(
1)(

−
−−=

N

PHR
PSED

CB
                   (31) 

where N is the total number of heuristics used for GDA initialisation. A high value of 
SED indicates the high effectiveness of the retrieved sequential heuristic. For each 
combination of the case base and the similarity measure, the average SED(P) values 
were  computed for all benchmark problems and are shown in Figure 4. 
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Figure 4. Performance of Different Similarity Measures 

 



It is evident that the SED values of SIM3 are higher than those of SIM1 and SIM2 
for all three case bases. This result justifies the new fuzzy similarity measure. The 
experimental results also show that the growth of the size of the case base leads to the 
retrieval of more effective sequential heuristics.  

5.3 System Performance on Benchmark Problems 

The following set of experiments aims to investigate the effectiveness of our CBR 
system by comparing the obtained results with those of other approaches. The CBR 
system with the similarity measure SIM3 and the large case base were used to solve 
benchmark problems. In each experiment, our CBR system selected a sequential heu-
ristic for a benchmark problem. The problem was solved by running the retrieved 
sequential heuristic and GDA successively for 200*106 iterations, 5 times with vary-
ing random number seeds. System Effectiveness Degree SED is calculated for each 
retrieved sequential heuristic. Table 6 shows our results and the best results achieved 
by exhaustive search across all heuristics.   

Table 6. Comparison of results for benchmark problems obtained by different initialisation of 
GDA 

 Exhaustive test CBR (|CB| = 72, SIM3) 

Data Retrieval Run GDA Retrieval Run GDA 

 SED 
Time 
(sec) 

Cost 
Time 
(sec) 

SED 
Time 
(sec) 

Cost 
Time    
(sec) 

Car-f-92 1.00 35700 3.97 1080 0.923 491 3.99 1027 

Car-s-91 1.00 42739 4.52 1310 0.948 1733 4.53 1040 

Ear-f-83 1.00 15245 34.78 690 0.949 445 34.87 690 

Hec-s-92 1.00 20874 11.32 1490 0.923 73 11.36 1021 

Kfu-s-93 1.00 19643 14.11 689 0.974 1402 14.35 751 

Lse-f-91 1.00 15095 10.78 595 1.00 1170 10.78 559 

Rye-f-92 1.00 20123 8.74 862 0.974 683 8.79 699 

Sta-f-83 1.00 12368 158.02 676 1.00 91 158.02 649 

Tre-s-92 1.00 16495 8.03 730 0.744 972 8.10 844 

Uta-s-92 1.00 32094 3.20 1051 1.00 839 3.20 1051 

Ute-s-92 1.00 10755 25.70 557 0.769 172 26.10 574 

Yor-f-83 1.00 26723 36.85 1200 0.949 348 36.88 1243 

 
It can be seen that CBR succeeded in suggesting the appropriate heuristics for 

GDA initialisation and thus resulted in high quality solutions. The new CBR initialisa-
tion was successful in finding the best heuristics for the benchmark problem lse-f-91, 
sta-f-83 and uta-s-92. For seven problem instances car-f-92, car-s-91, ear-f-83, hec-s-
92, kfu-s-93, rye-f-92 and yor-f-83, the retrieved heuristics are among the 4 best 
(0.923 ≤  SED ≤  0.974). It is important to note that the developed CBR initialisation 
took in average less than 10 minutes for each timetabling problem, while an exhaus-
tive test needed more than 6 hours. 

Table 7 shows the comparison of the average results generated by three other state-
of-the-art approaches: GDA where the initial solution was constructed by Saturation 



Degree (SD) [2], GDA initialised by the Adaptive heuristic [9, 10], GDA where the 
Saturation Degree heuristic was applied with the Maximum Clique Detection (MCD) 
and Backtracking (BT) in the initialisation phase (this heuristic was suggested by 
Carter, Laporte, and Chinneck [15] to be the best constructive heuristic). Each prob-
lem instance was solved 5 times. The time (in seconds) shown is the average time 
spent on the search. GDA was also allocated the same number of iterations 200*106 

for each approach. In this experiment, we employed the higher number of iterations 
than in the previous ones in order to compare our results with the published ones. The 
times shown are different due to the use of computers of different characteristics. 

Table 7. Comparison of results for benchmark problems obtained by different initialisation of 
GDA 

SD Adaptive SD & MCD & BT CBR (|CB| = 72) 
Data GDA 

Time 
Best 
Cost 

Avg. 
Cost 

GDA 
Time 

Best 
Cost 

Avg. 
Cost 

GDA 
Time 

Best 
Cost 

Avg. 
Cost 

Retrieval 
Time 

GDA 
Time 

Best 
Cost 

Avg. 
Cost 

Car-f-92 1120 4.03 4.07 416 -- 4.10 1220 3.97 4.04 491 1027 3.93 3.99 

Car-s-91 1400 4.57 4.62 681 -- 4.65 1441 4.62 4.66 1733 1040 4.50 4.53 

Ear-f-83 806 34.85 36.04 377 -- 37.05 767 33.82 36.26 445 690 33.71 34.87 

Hec-s-92 1471 11.27 12.43 516 -- 11.54 1411 11.08 11.48 73 1021 10.83 11.36 

Kfu-s-93 843 14.33 14.64 449 -- 13.90 996 14.35 14.62 1402 751 13.82 14.35 

Lse-f-91 646 11.61 11.65 341 -- 10.82 675 11.57 11.94 1170 559 10.35 10.78 

Rye-f-92 845 9.19 9.66 -- -- -- 881 9.32 9.50 683 699 8.53 8.79 

Sta-f-83 675 165.12 169.7 418 -- 168.73 674 166.07 166.31 91 649 151.52 158.02 

Tre-s-92 907 8.13 8.29 304 -- 8.35 751 8.19 8.27 972 844 7.92 8.10 

Uta-s-92 1070 3.25 3.30 517 -- 3.20 1101 3.24 3.31 839 1051 3.14 3.20 

Ute-s-92 716 25.88 26.05 324 -- 25.83 653 25.53 26.02 172 574 25.39 26.10 

Yor-f-83 1381 36.17 36.59 695 -- 37.28 1261 36.31 37.27 348 1243 36.53 36.88 

 
For nine benchmark problems, our CBR system obtained best average results (high-

lighted by the bold characters). For two problems, second best average results were 
obtained. Even more, for eleven benchmark problems the best value of the cost func-
tion was obtained as a result of appropriate GDA initialisation. The obtained results 
prove the significance of the appropriate initialisation of GDA.  

Finally, we also compare our results with those produced by the state-of-the-art 
timetabling metaheuristics: Simulated Annealing (SA) [30], Tabu search [43], and 
GRASP [19]. The average of the ranks for the twelve problem instances is shown in 
Table 8. 

 
 
 
 
 
 
 



Table 8. Comparison of results for benchmark problems obtained by different metaheuristics 

SA [30] Tabu [43] GRASP [19] CBR (|CB| = 72) 
Data 

Time 
Best 

Cost 

Avg. 

Cost 
Time 

Best 

Cost 

Avg. 

Cost 
Time 

Best 

Cost 

Avg. 

Cost 
Retrieval 

Time 
GDA 

Time 

Best 

Cost 

Avg. 

Cost 

Car-f-92 233 4.3 4.4 -- 4.63 4.69 -- 4.4 4.7 491 1027 3.93 3.99 

Car-s-91 296 5.1 5.2 -- 5.73 5.82 -- 5.4 5.6 1733 1040 4.50 4.53 

Ear-f-83 26 35.1 35.4 -- 45.8 45.6 -- 34.8 35.0 445 690 33.71 34.87 

Hec-s-92 5.4 10.6 10.7 -- 12.9 13.4 -- 10.8 10.9 73 1021 10.83 11.36 

Kfu-s-93 40 13.5 14.0 -- 17.1 17.8 -- 14.1 14.3 1402 751 13.82 14.35 

Lse-f-91 35 10.5 11.0 -- 14.7 14.8 -- 14.7 15.0 1170 559 10.35 10.78 

Rye-f-92 70 8.4 8.7 -- 11.6 11.7 -- -- -- 683 699 8.53 8.79 

Sta-f-83 5 157.3 157.4 -- 158 158 -- 134.9 135.1 91 649 151.52 158.02 

Tre-s-92 39 8.4 8.6 -- 8.94 9.16 -- 8.7 8.8 972 844 7.92 8.10 

Uta-s-92 233 3.5 3.6 -- 4.44 4.49 -- -- -- 839 1051 3.14 3.20 

Ute-s-92 9 25.1 25.2 -- 29.0 29.1 -- 25.4 25.5 172 574 25.39 26.10 

Yor-f-83 30 37.4 37.9 -- 42.3 42.5 -- 37.5 38.1 348 1243 36.53 36.88 

 
We can see that our CBR system outperformed other metaheuristics. Our CBR sys-

tem obtained the best average results for seven benchmark problems and the second 
best average results for two benchmark problems. In addition it is clear that additional 
time on the case retrieval is required by our CBR system. However the time spent on 
the selection of an appropriate sequential heuristic is justified by the quality of the 
results. 

 

6 Conclusions 

Different graph representation of examination timetabling problems and the corre-
sponding similarity measures between two problems have been discussed. They are 
used for development of a CBR system for heuristic initialisation of GDA. The ex-
perimental results on a range of real world examination timetabling problems prove 
that the new fuzzy similarity measure based on weighted graph representation leads to 
the good selection of sequential heuristic for GDA initialisation. By assigning linguis-
tic terms to the edge weights of the timetabling graphs, the new similarity measure 
enables the retrieval of the timetabling problem from the case base which is structur-
ally similar to the new problem.  

We have also demonstrated that the CBR system with the new similarity measure 
can efficiently select a good heuristic for GDA initialisation for most of the bench-
mark problems and even more it outperforms the other state-of-the-art solution ap-
proaches based on GDA. This research makes a further contribution to the attempt of 
development of the general metaheuristic framework for timetabling, which works 
well on a range of different timetabling problems. We believe that this new similarity 



measure along with our CBR methodology are also applicable to other domains such 
as personnel scheduling, job shop scheduling, and project scheduling. 
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