
Decomposition and Parallelization of Multi-Resource
Timetabling Problems

Petr Šlechta

Czech Technical University in Prague, Department of Cybernetics,
Technická 2, 166 72 – Prague 6, Czech Republic

pslechta@ra.rockwell.com

Abstract. The timetabling problem consists in fixing a sequence of meetings
between teachers and students in a prefixed period of time (typically a week),
satisfying a set of constraints of various types. [1] Course timetabling is a multi-
dimensional NP-Complete problem. [2] In this paper we present Multi-
Resource Timetabling Problem (MRTP), which is our model for generalized
high-school timetabling problem. The MRTP is a search problem – we try to
find a feasible solution. Backtracking search was selected for solving MRTP.
The main contribution of this paper is the Decomposition Algorithm for MRTP
to parallelize the search, so the whole MRTP can be easily distributed and
parallelized. Our approach was applied to a real life instances of high-school
timetabling problems. Results are discussed at the end of this paper and
parallelized search is compared with the centralized one.

1 Introduction
The traditional high-school timetabling problem is defined as follows [1] [3] (the
terminology from the citations is used in this section; the chapter 2 defines the
terminology which is used in the rest of this paper):

We have m classes c1, ..., cm, n teachers t1, ..., tn, and p periods 1, ..., p. We
are also given a non-negative integer matrix Rmxn, called requirements
matrix, where rij is the number of lectures given by teacher tj to class ci. The
problem consists in assigning lectures to periods in such a way that no
teacher or class is involved in more than one lecture at a time.

This definition does not reflect the following requirements (see [1]):

(a) Some lectures require special rooms (e.g. musical education lecture requires a
music room)

(b) Some lectures may be given to more than one class (e.g. gymnastic lesson may
involve two classes together)

(c) Some constraints on timetables may be defined for teachers, classes, and rooms
(e.g. some teacher may be unavailable at some time)

All requirements described above are generalized and considered in our Multi-
Resource Timetabling Problem (MRTP) model, which is described in section 2.

We selected backtracking search as a technique for solving MRTP. To parallelize
the search we have developed a Decomposition Algorithm (DA) which transforms

MRTP into non-oriented graph, applies color marking to the graph, and discovers how
to decompose and parallelize the search. The algorithm is described in section 3.2.

Our approach was applied to real life instances. Example of search parallelization
is given in section 3.5. In section 4 we discuss some results and we compare paral-
lelized search with the centralized one.

2 The Multi Resource Timetabling Problem (MRTP) Model
In MRTP model we treat all teachers, classes, and rooms as resources. Each resource
has defined some constraints on its timetable.

All lessons are treated as events. Each event requires some number of resources
(e.g. a lesson of mathematics requires one teacher and one class, a gymnastic lesson
may involve 4 resources: one teacher, two classes, and one special room).

Hence, the MRTP can be described by a set of resources and a set of events.

Definition 1 (MRTP). An instance of Multi-Resource Timetabling Problem is de-
scribed by the tuple INPUT = �E, R�, where R = {r1, ...,rm} is a set of m resources and
E = {e1, ..., en} is a set of n events to be scheduled.

Definition 2 (Resource). Each resource ri is described by the tuple �Si, Ci�, where Si is
a timetable associated with the resource ri, and Ci are constraints for the resource ri.

Definition 3 (Event). Each event ei is described by the tuple �Si, Ci, Ri�, where Si is a
timetable associated with the event ei, Ci are constraints for the event ei, and Ri =
{r1, ..., rmi} is a set of mi resources required by the event ei.

To schedule an event, all required resources must be properly scheduled to the
same time slot with respect to all event constraints and all constraints of the required
resources. Each event requires at least one resource (it may require more than one
resource) for its completion. At one time, each resource can be occupied by one event
at most. Event assignment is described more formally in the following definition.

Definition 4 (Event assignment). Event ei = �Si, Ci, Ri�, where Si = [si1, ..., siL], Ci =
[ci1, ..., ciL], Ri = {ri1, ..., ri,mi}, and ri = �Sj, Cj�, L is length of the schedule, can be
scheduled to the slot x if all of the following conditions are satisfied:

(a) The slot x of event's timetable is not occupied and is not forbidden by any
event's constraint.

(b) All required resources have free slot x in their timetables.

(c) None of the constraints of all required resources restricts us to use the slot x.

Our goal is to schedule properly all events E from the input tuple INPUT. The
following definition describes what we mean by feasible solution of MRTP.

Definition 5 (Solution of MRTP). A solution of Multi-Resource Timetabling Problem
can be described by the set OUTPUT = {S1, ..., Sm}, where Si is a timetable for
resource ri from the tuple INPUT. All events from the INPUT tuple must be scheduled
according to the Definition 4.

2.1 Example of MRTP
In this section we use the MRTP model from the previous section to describe a simple
high school timetabling problem. The problem is very simple and should only illus-
trate how the model can be used.

INPUT = �T, R�, R = { A, B, C, John, Bill, Ray, Joe },

T = { M1, M2, F1, F2, H1, H2, H3, A1, A2, Ph1 }

A, B, and C are classes (disjunctive groups of students), John, Bill, Ray, and Joe
are teachers. M1, M2, F1, F2, H1, H2, H3, A1, A2, and Ph1 are subjects which
should be scheduled. For simplicity we do not introduce any constraints on timetables
in this example. Also the timetables are simplified: each timetable consists of 3 days,
each day has 3 time slots.

Detailed description of all events is summarized in Table 1.

OUTPUT = { sA, sB, sC, sJohn, sBill, sRay, sJoe }

One possible solution of the problem described above is shown in Table 2. We
present only timetables for the classes A, B, and C. Timetables for the teachers (sJohn,
sBill, sRay, and sJoe) can be easily derived.

Table 1. Description of all events from the problem defined in this section

Event
name

Event
description

No of
instances

Required
resources

M1 Mathematics 1 A, John
M2 Mathematics 2 B, Joe
F1 Physics 2 A, John
F2 Physics 2 B, Joe
H1 History 1 A, Ray
H2 History 1 B, Bill
H3 History 1 C, Ray
A1 Art 1 C, Ray
Ph1 Philosophy 1 C, Bill
A2 Art 1 C, Bill

Table 2. One possible solution of the problem defined in this section – timetables for the class-
es A, B, and C. Timetables for the teachers can be easily derived

sA
H1 F1
F1
M1 H1

sB
M2
M2
H2 F2

sC
A2
A1 Ph1
H3

3 Solution Approach
Backtracking search was selected as a technique for solving MRTP. To parallelize the
search we have developed a Decomposition Algorithm (DA) which transforms MRTP
into a non-oriented graph, applies color marking to the graph, and discovers how to
decompose and parallelize the search.

3.1 MRTP as Non-oriented Graph
The MRTP is transformed to a non-oriented graph as follows:

(a) Each resource is represented as one graph node.

(b) Each event is transformed into a set of edges. The set of edges forms complete
subgraph under all nodes representing resources required by the event to its
completion.

Figure 1 shows a graph for one event which requires 4 resources for its completion
(such event does not appear in our example). The example from section 2.1 trans-
formed into non-oriented graph is shown in Figure 2.

Figure 1. Graphical representation of one event which requires four resources for its comple-
tion (teachers Jim and Ann do teach together class D in room Lab1)

Figure 2. Graphical representation of the problem from section 2.1

3.2 Decomposition Algorithm (DA)
The parallelization of MRTP is based on splitting of the whole problem into indepen-
dent subproblems. Splitting of the problem into independent subproblems corresponds

to splitting the graph into isolated subgraphs (the subgraphs are not connected by any
edge).

Usually we have to remove some edges from the graph to split it into isolated
subgraphs. There are more sets of edges that can be removed from the graph to split it.
Our goal is to select the proper set of edges which is small enough and which splits the
graph into two subgraphs of approximately same size. We developed Color Marking
Algorithm (CMA) which marks the graph with two colors and discovers the proper set
of edges which should be removed from the graph. The Color Marking Algorithm is
described in section 3.3.

Once we have found the proper set of edges to remove, we can start with decompo-
sition of the problem. The removed edges correspond to events which must be
scheduled to split the MRPT into two subproblems which are independent. These two
subproblems may be solved in parallel and the found solutions may be easily inte-
grated.

The graphical representation of example from section 2.1 is in Figure 2. If we
remove the edge “H3,A1” the graph is split into two independent subgraphs – see
Figure 3.

If we schedule events H3 and A1, the remaining events are split into two inde-
pendent sets:

G1 = {M2, F2, H2, Ph1, A2 }, G2 = {M1, F1, H1}

All resources are also split into two sets:

G1r = {B, C, Bill, Joe}, G2r = {A, John, Ray}

By scheduling an event from set G1 only resources from set G1r may be affected. The
same holds for sets G2 and G2r. The problem was split into two independent sub-
problems.

(a) (b)

Figure 3. The graph from Figure 2 divided into two isolated subgraphs

3.3 Color Marking Algorithm (CMA)
This section describes the Color Marking Algorithm designed to discover the set of
edges which should be removed to split the whole graph into isolated subgraphs.

CMA is based on the following idea: We remove one edge from the graph. One
node, to which the removed edge was connected, will obtain red color and the second

one will obtain blue color. Then the color is propagated through the edges and the
color loses its intensity. When the color propagation is finished, each node has a
portion of blue and red color. The node is finally colored by the color of which the
node has bigger portion. At the end, red nodes form the first subgraph and blue nodes
form the second one (see Figure 4).

If the graph has z edges we start the CMA z-times to obtain all possible color
markings of the graph. From all these color markings we select the most appropriate
based on its rating. The rating composes of the two components: (a) number of edges
which were removed from the graph (smaller number is preferred), and (b) difference
between sizes of two subgraphs (the size of both subgraphs should be similar).When
an edge is removed from the graph, the corresponding event has to be scheduled. This
decision is made locally – a partial schedule is formed.

The Color Marking Algorithm is briefly described in the following listing:

for each node n in the graph {
n.red_portion = 0; n.blue_portion = 0;

}
for each edge e in the graph {

remove e from the graph;
node1 = the 1st node to which e was connected;
node1.red_portion = 100; node1.blue_portion = 0;
node2 = the 2nd node to which e was connected;
node2.red_portion = 0; node2.blue_portion = 100;
repeat {

changed = false;
for each node n in graph {

call routine propagate_color(n);
}

} until (changed == false);
count a rating for the colored graph;

}
select the partitioning with the best rating;

routine propagate_color(node n) {
no_of_edges = number of all edges connected to the node n;
red_portion_to_propagate = n.red_portion / no_of_edges;
blue_portion_to_propagate = n.blue_portion / no_of_edges;
for each edge e connected to the node n {

neighbor_node = node to which the selected edge e is connected
if (red_portion_to_propagate > neighbor_node.red_potion) {

neighbor_node.red_portion = red_portion_to_propagate;
changed = true;

}
if (blue_portion_to_propagate > neighbor_node.blue_potion) {

neighbor_node.blue_portion = blue_portion_to_propagate;
changed = true;

}
}

}

Figure 4. The colored graph from Figure 2 (assigned portion of red and blue color is above
each node). The edge which must be removed to split the graph into two subgraphs is dashed.
This edge corresponds to the evens H3 and A1. These events must be scheduled to split the
whole problem into two independent subproblems

3.4 Examples of Graph Decomposition
All possible decompositions of the problem from section 2.1 are illustrated in the fol-
lowing figures.

|G1| = 2, |G2| = 5 |G1| = 1, |G2| = 6 |G1| = 1, |G2| = 6

|G1| = 3, |G2| = 4 |G1| = 3, |G2| = 4 |G1| = 2, |G2| = 5

Figures 5. Possible decompositions of the graph from Figure 2. Hatched nodes form the first
subgraph, nodes without hatching form the second subgraph

(a) |G1| = 3, |G2| = 4 (b) |G1| = 4, |G2| = 5

(c) |G1| = 7, |G2| = 8

Figure 6. Some problems represented as graphs and decomposition of them. Dashed edges
were removed to split the graph into two subgraphs. Hatched nodes form the first subgraph,
nodes without hatching form the second subgraph

Decomposition of some other problems is shown in Figure 6. These problems are
not described in this paper and the graphs should only illustrate decomposition of larg-
er problems.

3.5 Example of Search Parallelization
The whole decomposition of the problem from section 2.1 is shown in Figure 7. At the
beginning, we start with all events in one set. This set is received by the first sched-
uler, which schedules events H3 and A1 locally. After this the problem splits into two
independent subproblems (events M2, F2, H2, Ph1, A2 represent the first subproblem,
and events M1, F1 and H1 form the second subproblem). Then each subproblem is
decomposed recursively as shown in Figure 7.

The parallelization of the search is shown in Figure 8. The whole problem was split
into two subproblems, one was dedicated to the machine M2 and the second one was

dedicated to the machine M4. The machine M2 (resp. M4) decomposed the given
subproblem into two new subproblems, one was solved by machine M2 (resp. M4)
itself, the second one was dedicated to the machine M3 (resp. M5).

Figure 7. Decomposition of the problem from section 2.1. Boxes represent tasks which were
scheduled locally by schedulers to split the given problem into subproblems

Figure 8. Parallelization of the search. Hatched boxes represent decomposition, scheduling,
and integration of found solutions

4 Results
We have implemented a distributed scheduler written in Java 1.4 [7]. Some tests were
performed to verify and exemplify the usability and performance of our approach. We
run all these tests on PCs with Pentium III 866 MHz processor, 256 MB RAM, under
Microsoft Windows 2000.

We would like to present results for some real life problems which were treated.
Each problem description contains the complexity of the problem and the search times
(for centralized and parallel search). Results are summarized in the following table.

Table 3. Some treated real life problems. Comparison of parallelized and centralized search

Problem
number

Complexity Search time
Resources Events Centralized Parallel

1 40 56 13.6 s 11.2 s
2 43 111 24.8 s 21.4 s
3 45 158 36.2 s 28.6 s

For example the problem number 3 is the problem of construction of timetable for
high school with 9 classes, 36 teachers (some of them are external teachers), and
158 subjects. All the information needed for timetable construction was released by
the school management.

Thanks to our decomposition technique, we were able to parallelize the whole
search which resulted in the faster searching. We would like to optimize the Decompo-
sition Algorithm in the future.

We would like to compare our algorithm to another algorithm based on decomposi-
tion, but we are not able to find any results we can compare. Interesting papers about
decomposition algorithms are for example [4] [5], but they deal with another prob-
lems, which cannot be directly compared with our MRTP. We agree with paper [6]
where the following conclusion is: “Although the STP (School Timetabling Problem)
is a classical optimization problem, there is still no set of test-problems with the
particular characteristics described in ... (at least, none that we know of to date) that
can be used as benchmark.”

5 Conclusions
We developed the model for a class of timetabling problems called Multi-Resource
Timetabling Problems. We developed Decomposition Algorithm which allows us to
parallelize the search. The approach was successfully evaluated, and it has the follow-
ing advantages:

(a) The whole problem can be split into smaller independent subproblems which
can be solved in parallel.

(b) Integration of found solutions is very simple and straightforward because the all
subproblems are independent. There is no need for communication or synchro-
nization between two subproblems during the search.

(c) The parallel search allows us to use modern grid computing techniques to solve
our problem in a short time.

References
1. Andrea Schaerf: A survey of automated timetabling, Report, CWI, 1995, ISSN

0169-118X
2. Michael W. Carter, Gilbert Laporte: Recent Developments in Practical Course

Timetabling, in Practice and Theory of Automated Timetabling II (PATAT'97),
LNCS 1408, Springer, 1997, ISSN 0302-9743

3. Dominique de Werra: An Introduction to Timetabling, in European Journal of
Operational Research 19, 1985

4. L. Friha, P. Queloz, C. Pellegrini: A Decomposition Method for Hospital Schedul-
ing Problems, in Workshop on Industrial Constraint-Directed Scheduling, 1997

5. Hans-Joachim Goltz, Ulrich John: Methods for Solving Practical Problems of Job-
Shop Scheduling Modelled in CLP(FD), in Proceedings of Practical Application
of Constraint Technology (PACT'96), 1996

6. Marcone Jamilson F. Souza, Nelson Maculan, Luiz Satoru Ochi: A GRASP-Tabu
Search Algorithm to Solve a School Timetabling Problem, 4th Metaheuristics
International Conference (MIC'2001), 2001

7. The Source for Java Technology, http://java.sun.com, Sun Microsystems, Inc.,
2003

8. Vladimír Ma�ík, Olga Št�pánková, Ji�í Lažanský, et al.: Um�lá inteligence (3),
Academia Praha, 2001

