
Learning User Preferences in Distributed
Calendar Scheduling

Jean Oh and Stephen F. Smith

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA
{jeanoh,sfs}@cs.cmu.edu

Abstract. Within the field of software agents, there has been increas-
ing interest in automating the process of calendar scheduling in recent
years. Calendar (or meeting) scheduling is an example of a timetabling
domain that is most naturally formulated and solved as a continuous,
distributed problem. Fundamentally, it involves reconciliation of a given
user’s scheduling preferences with those of others that the user needs
to meet with, and hence techniques for eliciting and reasoning about a
user’s preferences are crucial to finding good solutions. In this paper, we
present work aimed at learning a user’s time preference for scheduling
a meeting. We adopt a passive machine learning approach that observes
the user engaging in a series of meeting scheduling episodes with other
meeting participants and infers the user’s true preference model from
accumulated data. After describing our basic modeling assumptions and
approach to learning user preferences, we report the results obtained in
an initial set of proof of principle experiments. In these experiments, we
use a set of automated CMRADAR calendar scheduling agents to simu-
late meeting scheduling among a set of users, and use information gen-
erated during these interactions as training data for each user’s learner.
The learned model of a given user is then evaluated with respect to how
well it satisfies that user’s true preference model on a separate set of
meeting scheduling tasks. The results show that each learned model is
statistically indistinguishable from the true model in their performance
with strong confidence, and that the learned model is also significantly
better than a random choice model.

1 Introduction

One vision of research in the field of intelligent software agents is the realiza-
tion of personal computer assistants. A personal computer assistant is a software
agent that is integrated into a user’s computing environment and pro-actively
accomplishes various tasks in support of high-level user goals. Like a human



2

assistant, such a personal computer assistant would do such things as process
email, schedule meetings, service information requests, organize events, and so
on; autonomously interacting with other personal computer assistants as nec-
essary to carry out a given task and in each case recognizing if and when it is
appropriate to engage the user in the process. One fundamental aspect of a per-
sonal computer assistant is that it is enduring and self-improving. It is expected
to persist indefinitely, and learn over time to make decisions that better reflect
user constraints and preferences.

Toward this goal of creating personal computer assistants, there has been in-
creasing interest in automating the process of scheduling meetings and manag-
ing user calendars. Calendar scheduling can be seen as a kind of timetabling
problem - the objective is to assign time slots to meetings in such a way that the
constraints and preferences of meeting requests and prospective attendees are
best satisfied. However, the problem of calendar scheduling differs from typical
timetabling problems in a couple of important respects:

– Continuous, dynamic problem - Calendar scheduling is an ongoing endeavor.
At any point in time, there are some number of meetings booked, and new
requests are serviced continuously in an incremental manner. It is generally
desirable to maintain stability in assignments over time, although invariably
it will be necessary to bump previously scheduled meetings and the busier
individuals are the more frequent such tradeoffs will need to be considered.

– Distributed decision-making - Although one can consider centralized ap-
proaches to the calendar scheduling problem, this requires all individuals in-
volved to share their calendars and this is not a realistic assumption in many
circumstances. In these cases, protocols for negotiating time slots that are
mutually acceptable to prospective attendees must be devised. Note that in
some situations it may be necessary to settle on a subset of attendees, and/or
coordinate with additional resource brokers (e.g., room booking agents).

Like other timetabling domains, calendar scheduling preferences will vary from
user to user, and one strong prerequisite of any calendar scheduling solution is
an ability to incorporate user-specific preferences. Preferences can range from
simple static time of day (or day of week) preferences, to more complex dynamic
preferences (such as scheduling meetings back-to-back or retaining free time in
proximity to important deadlines), to preferences of which meeting(s) to bump
in over-constrained situations. Typical timetabling solutions require users to di-
rectly specify their preferences as input to the problem solving process. However
the fact that calendar scheduling is an ongoing, continuous process suggests the
possibility of automatically acquiring this knowledge over time through obser-
vation of meeting scheduling episodes.

Our recent research in the calendar scheduling domain has led to development of
CMRADAR, a distributed calendar scheduling system[9]. A Each CMRADAR



3

scheduling agent accepts requests for meetings from its user , and interacts au-
tonomously with the CMRADAR agents of other users to determine and confirm
a mutually agreeable meeting time. If the action of scheduling a given meeting
preempts a previously scheduled meeting, then affected CMRADAR agents co-
ordinate to reschedule the bumped meeting. CMRADAR meeting scheduling
protocols support a range of negotiation strategies, allowing the amount of in-
formation exchanged (e.g., number of options, preference values), and the as-
sumptions made about organizational structure to be varied. Scheduling options
are proposed and evaluated by CMRADAR agents based on how well they satisfy
underlying user preferences. CMRADAR uses a quantitative preference repre-
sentation, i.e., a user preference is specified as a utility function and assigns a
value indicative of degree of satisfaction to a given scheduling option. Since such
a specification of preference is somewhat unnatural for the user whom a given
CMRADAR agent is assisting, we consider the possibility of automating the
acquisition of user preferences. Another advantage of learning preferences auto-
matically is that statistical observations can reveal certain meaningful patterns
that are often missed by the human users.

Our general hypothesis is that it is possible for a software agent to learn a user’s
meeting time scheduling preferences by observing the user engage in a series of
meeting scheduling episodes with other meeting participants. In this paper we
describe an initial proof of principle experiment. We make specific assumptions
about the types of information that can be observed during a meeting schedul-
ing episode and the organizational setting in which meeting scheduling takes
place, and with these assumptions we investigate an approach to learning the
user’s true preference model. In particular, we assume that a learning software
agent has access to the following information when observing the user schedule
meetings: (1) the user’s current calendar, (2) incoming and outgoing meeting re-
quests (initiator, proposed time slots), (3) user replies (accept or refuse) and (4)
confirmed meeting time slots. We further assume that meeting scheduling takes
place within a hierarchical organization, that the learning agent has knowledge of
the respective ranks of various meeting participants in the organization, and that
users in the organization use a common negotiation strategy when scheduling
meetings that favors the preferences of higher ranked individuals. Our specific
hypothesis is that under these assumptions, accumulation of the above meeting
information over some number of user scheduling episodes is sufficient to enable
the agent to learn the user’s true meeting time preference. To test this hypothe-
sis we use a set of CMRADAR scheduling agents to simulate meeting scheduling
under the above assumptions and generate training data for the learning agent.
We then evaluate the ability of the learning agent to learn the true preference
model of a given CMRADAR agent.



4

2 Related Work

There has been growing interest in creating software agents that can assist the
users with daily routine tasks. Particularly in solving the calendar scheduling
problems there exist several commercial software calendar programs that support
some form of basic meeting scheduling protocol. For instance, Microsoft Outlook
Exchange Server provides capabilities such as finding intersections of free time
slots of all attendees, and sending out meeting requests via automatically gener-
ated email messages, etc. Most commercial software rely on the protocol in which
a centralized server has access to every individual calendar. In general meeting
scheduling often takes place in more distributed settings where the members of
an organization are not obliged to use a specific calendar software but elect to
use their own choice of calendar programs. More fundamentally, these tools are
limited in the fact that the user’s scheduling preferences and habits are ignored.

Sen et al. [10] applied the voting theory to their distributed scheduling agent
system which tries to compromise conflicting user preferences during the nego-
tiation process. The preferences are associated with utility values similar to our
approach, but the user is responsible for specifying the quantitative data manu-
ally. Calendar Apprentice (CAP) [5][8] used the decision tree learning method to
learn the preference rules. Blum [2] improved CAP’s performance by applying
Winnow and Weighted-Majority based algorithms. CAP suggests specific val-
ues for the attributes of meeting such as duration and time slot. For example,
time of day preference rule suggests time slot for a given type of meeting. If
the suggested time slot is already taken by another meeting the closest available
time slot is suggested. On the other hand, CMRADAR learns a utility function
to evaluate different alternatives. PCalM [1] is another system that learns an
evaluation function using large margin method [6] and Naive Bayesian approach
with additional active learning strategy. However, no experimental results have
been reported in the literature.

3 Basic Modeling Assumptions

For purposes of this paper, we adopt the following basic modeling assumptions:

– We define a calendar to be a sequence of time slots of equal duration over
some horizon. Let Cu be the calendar of user u, and Cu(t) refer to time slot
(t) of Cu.

– A meeting request Reqi,A,T is initiated by an an initiator i, and designates
a set of attendees A and a set of one or more proposed time slots T .

– A reply or response to meeting request r by user u is designated Respu,r

and specifies a value of either accept or refuse for each time slot t ∈ T .



5

– A Scheduled Meeting Mi,A,t similarly designates an Initiator i, a set of at-
tendees A and a specific time slot t. For all u ∈ A, Cu(t) = Mi,A,t.

– A given time slot Cu(t) of user u’s calendar will either contain a scheduled
meeting M or is available. Only one meeting may be scheduled at a given
time slot. Hence for any new meeting M ′ to be scheduled at a given time slot
t, either Cu(t) = available or the currently scheduled meeting MI,A,t : u ∈ A
must be bumped.

– A static user meeting time preference model is expressed as a utility curve
over some sequence of time slots. A static time of day (TOD) preference
is utility curve over a sequence of TOD time slots (e.g., the sequence of
slots 7AM, 8AM, . . . 6PM). A time of week (TOW) preference model would
be specified similarly (albeit using a larger sequence of TOW time slots).
The value associated with a given time slot t in a preference utility curve
ranges from 1.0 (most preferred) to -1.0 (most negatively preferred), with 0
designating a tolerable lower bound on acceptability in peer to peer nego-
tiation circumstances. Let Prefu(t) designate the preference value for time
slot t by user u. When scheduling a meeting, Prefu determines the relative
desirability of different available time slots.

– We assume a hierarchical organization with n levels. A given individual i in
the organization has a rank Ri, where 1 ≤ Ri ≤ n. Individuals with higher
rank reside at higher levels in the organization.

From the standpoint of the learning agent, the goal is to observe user u in
the process of scheduling meetings and to acquire u’s preference curve Prefu.
We assume that the learner sees each meeting request Reqi,A,T involving u,
each Respu, r involving u, and receives confirmation of each scheduled meeting
Mi,A,t involving u. The learner also has access to u’s current calendar at all
times. Finally, the learner has knowledge of the ranks of all individuals in the
organization, and assumes that all individuals use a common strategy for nego-
tiating meeting times in which the preferences of higher ranked individuals are
favored.

4 Approach

We take a statistical approach to learning a static time-of-day (TOD) preference
curve for a given user from observed meeting scheduling data. During a series
of meeting scheduling episodes the learning agent observes the user’s actions
relative to the set of time slots in Cu. As meeting scheduling proceeds, the user
proposes various time slots to initiate new meetings, accepts or refuses the time
slots proposed by other users, and receives confirmations of mutually agreed
upon meeting times. Conceptually, our approach views such actions and results
as noisy examples of the user’s underlying preference model (both positive and
negative). In order to turn this observed data into a meaningful characterization



6

of the user’s time of day preference, we map the collected set of scheduling
actions and results into “votes” for each time slot. The key point of our approach
concerns how to weight these votes to minimize the noise.

In more detail, the following information is collected as the user engages in
meeting scheduling:

– TOD Time slots proposed by the user when initiating a meeting. In this case,
proposed time slots provide active positive evidence of the user’s true pref-
erence. Accordingly, we define InitPropCtu(t) to accumulate this positive
evidence for different TOD time slots (e.g., 7 AM, 8 AM, etc.). The potential
obscuring factor (or source of noise) in this data, however, is the density of
Cu; if the most preferred time slots are already occupied, then less preferred
time slots will necessarily be proposed. Taking this fact into account, each
time the user proposes a given TOD time slot t when initiating a meeting,
the following computation is performed:

InitPropCtu(t) = InitPropCtu(t) + (1−DensityCu)

where
DensityCu =

OccupiedSlotsCu

TotalSlotsCu

.

In other words, the evidence for a given proposed TOD time slot is discounted
by the current density of Cu.

– TOD Time slots that are available but refused by the user when respond-
ing to a meeting request. In this case, the user’s response provides active
negative evidence for the time slot(s) in question. We define RefusedCtu(t)
to accumulate this negative evidence for various time slots. Each time the
user refuses a proposed TOD time slot t that is actually available in Cu, the
following computation is performed:

RefusedCtu(t) = RefusedCtu(t) + 1.

– TOD Time slots of confirmed meeting times. These time slots also can pro-
vide passive positive evidence of the user’s true preference (since the user has
agreed to this time slot). As in the case of those time slots proposed by the
user when initiating a meeting , DensityCu can be an obscuring factor and
must be discounted. However, here there is also a second source of noise re-
lating to the relative ranks of meeting attendees in the organization. Taking
into account the fact that all users employ a common negotiation protocol
that favors higher ranked individuals, we assume that the user will tend to
reveal more truthful preferences when negotiating with lower ranked indi-
viduals. To account for this, evidence relating to confirmed meeting times
is differentiated by the rank of the meeting initiator. Specifically, we define
ConfirmedCtu(r, t), and each time a TOD time slot t proposed by an in-
dividual of rank r is confirmed as a meeting time, the following update is
performed:

ConfirmedCtu(r, t) = ConfirmedCtu(r, t) + (1−DensityCu).



7

Using the above computations, we collect “votes” for each TOD time slot. We
then use the weighted k-nearest neighbor (KNN) algorithm [4] to consolidate this
data and smooth the curve. KNN was initially proposed by Fix and Hodges [7].
It is a popular statistical approach which has been used heavily in the pattern
recognition research and also in the text categorization. The basic idea here is
to predict the utility value for a given TOD time slot using k similar data points
in the training set. Here similarity is defined as a combination of both distance
between TOD time slots and the distance between a meeting initiator’s rank
and the user’s rank in the organization. The influence of a given data point on
another is discounted as a function of its distance.

In more detail, the learned user preference model is computed according to the
following four step procedure:

1. Integrate TOD time slot values in ConfirmedCtu - Taking the user’s
rank Ru into account, weighted KNN is applied to average the values accu-
mulated for each TOD time slot (i.e., each column in the matrix). KNN is
applied asymmetrically in this case using rank distance as a similarity metric.
Specifically, values accumulated for meetings initiated by individuals of rank
Ri > Ru are increasingly discounted as rank distance increases, based on the
above stated intuition that meetings initiated by higher ranked individuals
give less information. On the other hand, values for meetings initiated by
individuals of rank Ri ≤ Ru are given full weight, since the user’s preference
will dominate in this case. The result of this smoothing step is a flattened
vector of Confirmed meeting votes, designated FlatConfirmedCtu.

2. Combine collected data - Compose final “votes” for each TOD time slot
as follows:

TSu = w1 × InitPropCtu + w2 × FlatConfirmedCtu − w3 ×RefusedCtu

3. Smooth adjacent time slot data - Weighted KNN is applied again, this
time to the consolidated TOD time slot vector TSu. Following the assump-
tion that the actual (true) user preference will tend to be continuous, each
TOD time slot value is averaged with the values of the k neighboring TOD
time slots, discounted by TOD distance.

4. Normalize final values - Finally, the values in TSu are normalized to the
range [−1, 1] to produce the learned preference utility curve.

In the experiment described below, the above procedure is invoked after observ-
ing a fixed number of meeting scheduling episodes. Note however, that algorithm
could be applied to compute (and recompute) the utility curve dynamically as
more data points are accumulated over time.



8

5 Evaluation

Our evaluation contrasts the performance of three preference models:

– true model - the preference model used to simulate meeting scheduling and
generate the training data used by learner

– learned model - the preference model generated by the learning agent.
– random model - a preference model that randomly assigns utility values

to time slots.

Each of these models is evaluated with respect to the true model - i.e., how
well does each model approximate the scheduling outcomes produced by the
true model. Each model is applied to schedule a common (new) sequence of
meetings, and in each case the final resulting calendar is evaluated with respect
to how well it satisfies the true user preference model. More precisely, the quality
of the resulting schedule is determined as: Q =

∑
m∈Mtgsu

Prefu(TimeSlot(m))
|MTGSu| ,

where MTGSu is the set of meetings in Cu and TimeSlot(m) is the time slot in
which meeting m is scheduled.

6 Experimental Design

We use a set of CMRADAR agents to simulate meeting scheduling in a 4 per-
son organization. In our experiment, this CMRADAR simulation serves two
purposes. First, it is used to generate training data for learning a given user’s
preference model. Second, it is used to evaluate the performance of a learned
user preference model during the test phase of the experiment. The simulation
is configured as follows:

– Each CMRADAR “user” (agent) is given a unique preference curve. Ex-
periments were run with two distinct sets of preference curves: (1) a sim-
ple configuration consisting of a combination of morning, afternoon, strictly
morning, and strictly afternoon preferences, and (2) a complex configuration
consisting of 4 randomly specified preference curves.

– We assume a 3-tiered organizational structure with UserA > UserB >
UsersC1, C2.

– A common negotiation protocol that favors preferences of higher ranked
individuals is utilized by all CMRADAR agents. Details of this negotiation
protocol are given in Appendix A.

For purposes of the experiment user calendars are assumed to contain a total
of 60 time slots per week; specifically a 5 day work week with each work day



9

containing 12 one hour time slots from 7AM to 7PM. The target is to learn a
daily TOD preference, i.e., a utility curve over the sequence of TOD time slots
from 7AM to 7PM.

For the training (learning) phase of each experiment, 60 meeting requests to be
scheduled over a two week horizon were randomly generated. 50 meetings were
designated for week one and 10 for week two to ensure that some number of
scheduling decisions must be made in the context of high density calendars. Each
generated meeting involved 2, 3 or 4 of the individuals in the organization and
the initiator was randomly assigned. Starting with empty calendars for all agents,
the CMRADAR system is used to automatically schedule these 60 meetings. All
meeting request messages, meeting response messages and meeting confirmation
messages together with the users’ evolving calendars are used along the way
as training data for the learning algorithm summarized in section 4. Note that
CMRADAR is a distributed system and each CMRADAR agent represents a
different user in the organization. Hence, there are 4 different preference learners
operating in this experiment, each associated with a specific CMRADAR agent
(or user). Of course each learner only has access to the information that is local
to its user.

For the test phase of each experiment, 20 new meetings to be scheduled in a
one week interval were randomly generated as before. Each of 4 learned models
was evaluated separately, by substituting one learned model for the correspond-
ing true model in the CMRADAR system, and then running the system along
with the true preference models for other CMRADAR users. For each revised
configuration, the sequence of 20 new meetings was scheduled, starting again
with empty calendars for all agents. By limiting the test case to 20 meetings,
we ensure calendars that in the worst case are only 1

3 full, and hence scheduled
times are likely to be more reflective of user preference.

As indicated above, separate experiments were run for both simple and complex
configurations of true preference models. For each configuration, 10 replications
of the above training and test procedure were run using different meeting sets.
The test results obtained using each different data set were averaged together
to determine overall performance of the learned model. For comparison, we also
computed average results obtained with the true and random models across all
data sets.

7 Results

We analyze the results of both experiments relative to two basic hypotheses :



10

1. The performance of the learned model is comparable to the performance of
the true model (i.e., the two models produce results that are statistically
indistinguishable).

2. The performance of the learned model is indistinguishable from the perfor-
mance of the random model.

Table 1 shows the experimental results obtained for the simple preference model
configuration. It shows, for each of the 4 users, the quality of the final schedule
produced by the learned model during the test phase from the standpoint of
how well it satisfies the true preference model of each respective user (designated
QLearned). The quality of the final schedules produced by the true model (QTrue)
and the random model (QRandom) are also shown, as well as a p-test evaluation
of our basic hypotheses (since Q is derived from proportional data).

For all users, we see that there is sufficient evidence to reject the hypothesis
that QLearned is indistinguishable from QRandom. In other words, QLearned per-
forms significantly better than QRandom for all users. We note that the difference
between QLearned and QRandom is smaller for users at lower ranks in the organi-
zation than it is for users at higher ranks (and this can be seen for the difference
between QTrue and QRandom as well). This reflects the fact that a common ne-
gotiation strategy favoring the preferences of higher ranked individuals is used,
which reduces the overall influence of the preferences of lower ranked individuals.

Alternatively, it is not possible to reject the hypothesis that QLearned is indis-
tinguishable from QTrue for any user. To provide evidence in support of this
hypothesis [3], confidence intervals for each pair of models were also computed.
These are shown in Table 2. We can see with 95% confidence that there is strong
evidence for QTrue = QLearned for all users except user A. In each case, the
confidence interval is found to contain zero and to be very small relative to
the two scores. In the case of user A, QLearned is actually found to be signifi-
cantly higher than QTrue. The fact that QLearned > QTrue is due to the fact
that the learned preference model is stricter than the true model, which leads
to increased pressure toward more preferred time slots in the true preference
model. We would expect these Q values to balance out with additional training
data. Figure 1 shows the true and learned preference models for each user from
one of the simple preference configuration runs to give a graphical sense of their
correspondence.

Table 3 shows the experimental results for the complex preference model config-
uration, and Figure 2 shows plots of learned and true models for each user from
one of the experimental runs. As in the first experiment, the performance of the
learned preference model is found to be better than that of the random model for
all individuals in the organization (i.e., the hypothesis QLearned = QRandom is
rejected in all cases). Again, it is the case that the hypothesis QLearned = QTrue

cannot be rejected for any user and computation of confidence intervals provides
strong evidence that the hypothesis can be accepted. Table 4 shows the 95%



11

QT rue QLearned QRandom QT rue = QLearned QLearned = QRandom

User (p-value) (p-value)
A 0.882 0.889 0.200 Cannot Reject Very Strong Reject

(0.712 > 0.05) (0.0000 < 0.01)
B 0.936 0.938 0.864 Cannot Reject Very Strong Reject

(0.534 > 0.05) (0.0068 < 0.01)
C1 0.822 0.807 0.720 Cannot Reject Strong Reject

(0.347 > 0.05) (0.020 < 0.5)
C2 0.791 0.792 0.726 Cannot Reject Weak Reject

(0.505 > 0.05) (0.061 < 0.1)

Table 1. Performance results for Simple preference model configuration.

QT rue - QLearned Width QT rue = QLearned

User interval
A (-0.028768,-0.006232) 0.022536 Cannot Accept

(but QLearned is better)
B (-0.0070086,0.0028886) 0.0098971 Accept
C1 (-0.00086878,0.031358) 0.032226 Accept
C2 (-0.011393,0.010319) 0.021713 Accept

Table 2. 95% Confidence Intervals for Simple preference model configuration.

Fig. 1. True (purple) and Learned (Red) Preference Utility curves for Simple Prefer-
ence experiment.



12

confidence intervals for the complex model. For users B, C1 and C2, the results
indicate that there is no significant difference between QTrue and QLearned. Not
only does the confidence interval of the difference contain zero in each case, but
it is also very small relative to the two scores. (e.g., for user B, the confidence
interval of the difference between QTrue and QLearned is .0225

.757 = 3% of QTrue).
In the case of user A, the confidence interval failed to cover zero. However, even
though the difference between the two scores is not really zero, it is no more
than .035

.826 = 4% of QTrue with 95% confidence, indicating that performance of
A’s learned model very closely approximates that of A’s true model.

QT rue QLearned QRandom QT rue = QLearned QLearned = QRandom

User (p-value) (p-value)
A 0.826 0.792 0.533 Cannot Reject Very Strong Reject

(0.191 > 0.05) (0.0000 < 0.01)
B 0.757 0.759 0.647 Cannot Reject Very Strong Reject

(0.52 > 0.05) (0.0069 < 0.01)
C1 0.607 0.602 0.510 Cannot Reject Strong Reject

(0.462 > 0.05) (0.032 < 0.5)
C2 0.634 0.640 0.501 Cannot Reject Very Strong Reject

(0.551 > 0.05) (0.0025 < 0.01)

Table 3. Performance results for Complex preference model configuration.

QT rue - QLearned Width QT rue = QLearned

User interval
A (0.016814,0.052084) 0.03527 Cannot accept
B (-0.01343,0.0091317) 0.022562 Accept
C1 (-0.011222,0.020452) 0.031674 Accept
C2 (-0.018553,0.0062601) 0.024814 Accept

Table 4. 95% Confidence Interval for Complex preference model configuration.

8 Conclusion and Future work

These two experiments provide initial evidence of the ability to learn static
user preference models for meeting scheduling through observation. Our ongoing
work is investigating the implications for user preference learning of other sets of
assumptions about meeting scheduling protocols and organizational structures,
as well as extension of user preference learning techniques to incorporate more
complex, dynamic preferences (e.g., a preference for scheduling meetings back-
to-back, a preference to bump less important meetings). Currently CMRADAR
utilizes a passive learning approach only, but we plan to integrate our system
with an intelligent user interface to enable active learning by collecting user’s
feedback. Since the user’s feedback provides the true answers the agent’s learning



13

Fig. 2. True (Purple) and Learned (Red) Preference Utility curves for the Complex
Preference experiment.

curve will be expedited. Knowing when and in what occasions the user should be
interrupted is also another interesting learning task. Rule based strategies such
as those proposed in CAP are more appropriate for capturing preferences more
sensitively tuned to specific meeting types, i.e. implicitly recurring meetings. To
tune our model to such customized meeting types, we may extend our system to
add additional features in the distance metric, such as the subject of the meeting.
If the number of features is large it will be more efficient to compute the utility
values for the alternative options dynamically because the utility values will
be customized depending on the attributes of the given meeting by selectively
choosing a subset of the data collection. For instance, if the given meeting is
with person A and the subject of the meeting is Lunch, the system will use only
the lunch meetings with person A to evaluate possible options, providing more
customized evaluation criteria.

9 Acknowledgements

The authors thank Jay Modi and Manuela Veloso for the many stimulating
discussions we have had on various aspects of calendar scheduling through-
out the RADAR project. This research was sponsored in part by the Depart-
ment of Defense Advanced Research Projects Agency (DARPA) under contract
#NBCHC030029.



14

A Negotiation Protocols for CMRADAR Simulation

Within the CMRADAR simulation used in the experiment, each CMRADAR
agent uses the following common negotiation protocol:

– Initiator: Initiator issues meeting request message and proposes a set of n
options (time slots) that best suit its own preferences. In other words, the
initiator proposes the n most preferred options (In the experimental runs
n = 3.)

– Attendees: Each attendee responds to the meeting request as follows:
• If one or more options are available, then evaluate and returned the

combined preference value for each. (See below)
• If there are no available options, bump the least important pre-emptable

meeting, and return the combined preference value for this newly freed
time slot.

– Initiator: Collect all attendee responses. If there is an agreeable option then
confirm it. Otherwise, repeat above steps with n new options.

The above protocol implements a common policy of favoring the preferences
of higher ranked individuals by communicating and combining the preference
values of initiator and attendee. More precisely, Let

– Prefi(t) = the value assigned by Initiator i to time slot t and communicated
to attendee A

– Prefa(t) = the value assigned by attendee a to time slot t
– RiandRa = the ranks of i and a respectively

In evaluating a time slot proposed to attendee a by initiator i, a computes the
following combined preference value:

PrefComb(t) = Wi × Prefi(t) + Wa × Prefa(t)

where
Wi = 0.5 + 0.5 ∗ Ri −Ra

RMax −RMin

and
Wa = 1.0−Wi

References

1. Pauline Berry, Melinda Gervasio, Tomas E. Uribe, Karen Myers, and Ken Nitz. A
Personalized Calendar Assistant. AAAI Spring Symposium Series, March, 2004.



15

2. Avrim Blum. Empirical support for Winnow and Weighted-Majority based al-
gorithms: results on a calendar scheduling domain. Machine Learning, 26:5–23,
1997.

3. Paul R. Cohen. Hypothesis Testing and Estimation, chapter 4. MIT Press, 1995.
4. Scott Cost and Steven Salzberg. A Weighted Nearest Neighbor Algorithm for

Learning with Symbolic Features. Machine Learning, 10:57–78, 1993.
5. C. Lisa Dent, Jesus Boticario, John P. McDermott, Tom M. Mitchell, and David

Zabowski. A Personal Learning Apprentice. In Proceedings of AAAI-92, pages
96–103, 1992.

6. Claude-Nicolas Fiechter and Seth Rogers. Learning Subjective Functions with
Large Margins. In ICML 2000, pages 287–294, 2000.

7. E. Fix and J. L. Hodges. Discriminatory Analysis: Nonparametric Discrimination:
Consistency Properties. Technical Report Project 21-49-004 4, USAF School of
Aviation Medicine, Randolf Field, Texas, 1951.

8. Tom M. Mitchell, Rich Caruana, Dayne Freitag, John P. McDermott, and David
Zabowski. Experience with a Learning Personal Assistant. Communications of the
ACM, pages 80–91, 1994.

9. Pragnesh Jay Modi, Manuela Veloso, Stephen F. Smith, and Jean Oh. CMRadar:
A Personal Assistant Agent for Calendar Management. In 6th International Work-
shop on Agent-Oriented Information Systems (AOIS), pages 134–148, 2004.

10. Sandip Sen, Thomas Haynes, and Neeraj Arora. Satisfying user preferences while
negotiating meetings. International Journal of Human-Computer Studies, 47:407–
427, 1997.


