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Abstract: It is well known that any search algorithm needs for certain parts to be problem 

specific. It is very important the way these parts are implemented. A fine tuning of 

parameters will never balance a bad definition of the solution set, of the neighbourhood or 

the cost function. In this paper we try to compare two well known neighbourhood operators 

applied to the timetabling problem. Tests were made using real data from three Portuguese 

schools of different size and complexity. We then observed that the application of the 

correct neighbourhood operator is essential to the success of the search algorithm. 

Keywords: timetabling, combinatorial optimization problems, local search, neighbourhood 

operators. 

1 INTRODUCTION 

Educational timetabling problems are known to be difficult real world problems that 

have been studied in some detail over the last few decades or so. This problem is NP-

Complete mainly due to the associated constraints [5][10]. We tried to define a general 

model that would fit the majority of the Portuguese education system. As any local 

search method needs a neighbourhood operator, we focused our attention in the 

implementation of the neighbourhood operator. 

The neighbourhood operators that we studied can have many names depending mainly 

on the domain where they are referred. Here we are going to study the single move and 

the double move.  

Single move means that we exchange the value of just one variable, while the double 

move signifies that the values of two variables are exchanged. These operators can have 

other designations, like insertion move or pairwise interchange depending mainly on the 

domain where they are applied. 
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We begin by describing our timetabling problem in section 2. In section 3 and 4 we 

review some important aspects of any combinatorial optimization problem. In section 5 

we explain the neighbourhood operators. In section 6 the cost function used is explained 

and also the way it is computed. Finally in section 7 we see some results that were made 

with real data of three Portuguese schools of different size and complexity. 

2 PROBLEM DESCRIPTION 

The timetabling problem [7] consists of assigning a set of lessons to time slots within a 

time period (typically a week), satisfying a set of constraints of various types. 

It is widely accepted that the timetabling problem can be divided in three main 

categories [2],[19]: 

1. Class/Teacher timetabling. The weekly scheduling of all classes, avoiding teachers 

meeting two classes in the same time and vice-versa. 

2. Course timetabling. The weekly scheduling for all lessons of a set of courses, 

minimizing the overlaps of lessons of courses having common students. 

3. Examination timetabling. The scheduling for the exams of a set of courses, avoiding 

overlapping exams of courses having common students, and spreading the exams for 

the students as much as possible. 

In this work, we are mainly concerned with the classification class/teacher, because in 

Portugal almost all schools even in universities students are grouped in classes with 

common subjects. Nevertheless, we tried to formulate the timetabling problem in a 

general way in order to take into account all the particular requirements of every school 

in Portugal. Thus, we have the following data sets: 

− A set { }1, , mT t t= …  of teachers. 

− A set  of classes. A class is a group of students having the same 

curriculum. 

1{ , , }nC c c= …

− A set 1{ , , }sS s s= …  of subjects. 

− A set 1{ , , }rR r r= …  of rooms. Rooms are first grouped in subsets of the same kind, 

i.e., with the same resources. Each subject has associated at least one type of room. 

2 



− A set { }1, , pH h h= …  of time slots. Time slots are distributed in  week days and  

daily periods

d h

H d h= × . Each period has the same duration. There can be two types 

of periods. Periods with or without teaching activities. 

− A set  of lessons. A lesson is the teaching unit. It is an instance of a list 

of teachers, a list of classes, a list of subjects and a list of rooms. Each lesson has a 

duration expressed in time slots. 

1{ , , }lA a a= …

There are two types of lessons: 

1. Simple lesson. A lesson identified only by one class and one subject, it can have more 

than one teacher. 

2. Compound lesson. A Lesson specified by a set of classes and/or a set of subjects. 

In general, a compound lesson is the way where several classes can group together to 

attend a certain subject or the way a class can be subdivided into subgroups to attend 

special subjects, like laboratories, etc. 

It is associated with every subject the kind of room it must have, i.e., the resources there 

must be in the room for a lesson of that subject should happen. 

As it was stated in the beginning of this section, a set of constraints must be satisfied in 

order to have a valid timetable. The number and the type of constraints vary from 

school to school, even within the same school system. Nevertheless there are only two 

categories of constraints: 

− Hard constraints are constraints that physically cannot be violated. There are also 

other constraints in spite of not being any physical constraint they fall into this 

category because of several reasons, for instance, because they are governmental 

ruled. 

− Soft constraints are in general preferences and they do not represent a physical 

conflict. 

By hard constraints, we mean the following: 

− A teacher cannot teach different lessons at the same time. 

− A class cannot have different lessons at the same time. 

− Different classes cannot be held in the same room at the same time. 

− Class unavailabilities. 
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− Teacher unavailabilities. 

− Etc. 

As soft constraints are mainly preferences they vary a lot among schools some examples 

are: 

− Teachers may prefer specific time slots. 

− Teachers may prefer specific rooms. 

− Certain kind of subjects should not be in contiguous time slots. 

For a complete description of the set of constraints we have used, see Table 1. We also 

have defined the concept of flexible constraint, i.e., the user may choose to which 

category each constraint belongs. 

As it can be easily seen, to get a complete solution for a particular timetabling problem 

with all of the constraints satisfied is very difficult, possibly even impossible to 

accomplish. 

Therefore the main objective of any Decision Support System for this kind of problem 

should be solving the hard constraints and minimizing the soft constraints. Even if it is 

impossible to find any feasible solution, it is better to give an approximate solution than 

none at all. 

3 COMBINATORIAL OPTIMIZATION PROBLEM (COP) 

Any timetabling problem belongs to the class of combinatorial optimization problem. In 

general a combinatorial optimization problem has a discrete finite search space S, and a 

function f, that measures the quality of each solution in S. 

  (1) :f S → \

The problem is to find  

  (2) )(minarg sfs
Ss∈

∗ =

Where  is a vector of decision variables and  is the cost function. The vector  is a 

global optimum. The neighbourhood  of a solution  in  is defined as the set of 

s f *s

( )N s s S
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solutions which can be obtained from  by a move. Each solution  is called a 

neighbour of .  

s ' (s N s∈ )

s

For each  the set  doesn’t need to be listed explicitly, in general it is implicitly 

defined by referring to a set of possible moves. Moves are usually defined as local 

modifications of some part of . The “locality” of moves (under a correspondingly 

appropriate definition of distance between solutions) is one of the key ingredients of 

local search. Nevertheless, from the definition above there is no implication that there 

exist “closeness” in some sense among neighbours, and actually complex 

neighbourhood definitions can be used as well. This operator can be quite complicated 

it might even be a metaheuristic. 

s ( )N s

s

4 SEARCH SPACE 

When working with discrete domains it is possible to define the search space in terms of 

the possible values that each variable can have [12]. For this problem we have the set 

{ }1, , pH h h= …  as the set of possible values that each lesson can have. 

Definition Search space: The complete set of solutions that belongs to the search space 

is defined by . If all  are equal then  and 1 lS H H= × ×… iH lS H= l lS H p= = . 

This value is an extreme case. For instance, there are  possible solutions if there are 

10 lessons and 10 time slots. Even if we restrict each lesson to a different time slot there 

will be 10  possible assignments. As it can easily be verified the search 

space for this kind of problem is very large. However not all solutions are feasible, i.e., 

a feasible solution has to have its lessons all scheduled and satisfying a certain number 

of constraints (hard constraints). A possible search space for this kind of problem could 

be similar to the one shown in Figure 1. 

1010

! 3,628,800=
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Feasible solutions 

Search space for all solutions 

 

Figure 1 Search space of all solutions for the timetabling problem. 

For certain problems it is very difficult to know if there exists at least one feasible 

solution before starting any search algorithm. Thus any search algorithm should be able 

to walk across the search space even inside infeasible regions. One of the most common 

ways to do that is to penalize constraints that are not satisfied and mixing them together 

in a cost function. 

In our problem we did more or less the same thing with the main difference that we 

didn’t relax the hard constraints (user defined). Instead, we will allow partial solutions 

to belong to the search space. We have a partial solution when there is at least one 

lesson that is not scheduled. Mathematically this can be represented by augmenting each 

set  with one more time slot . From a technical point of view, we will assume that 

the search space (with partial solutions) satisfies the following properties: 

iH 0h

1. The empty solution is in the search space S∅∈  

2. There is a path from any partial solution leading to other partial solution along which 

the lessons are scheduled one after the other. 

3. All complete solutions in the search space satisfy the hard constraints. 

In an attempt to limit the search space it is possible to define at the beginning regions of 

the search space that are forbidden, black holes. This can be accomplished by defining a 

bipartite graph , where every lesson belongs to  and every time slot 

belongs to the other vertex set  of this bipartite graph. The edge ( ,  means that 

lesson  can be given in time slot . This graph only takes into account the static 

constraints, i.e., class unavailabilities, teacher unavailabilities, subject unavailabilities, 

1 2( , , )G V V E= 1V

2V )i j E∈

i j
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etc. It is then possible to define the set  for each lesson. The search space thus 

formed could be like the one shown in Figure 2. 
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Figure 2 Search space with forbidden regions. 

Nevertheless, the number of possible solutions is still a huge value, so any attempt to 

check them all would be impossible for most real problems instances. 

5 LOCAL SEARCH METHODS 

Any local search algorithm starts off with an initial solution and then continually tries to 

find better solutions by searching the neighbourhood of the current solution. A local 

process can be viewed as a walk in a graph ( , )G S E=  where the vertex set is the set of 

solutions  and there is an edge  in E if and only if  and  are neighbours 

. The efficiency of any local search method depends on the modelling [13]. A 

fine tuning of parameters will never balance a bad definition of the solution set, of the 

neighbourhood or the cost function. In general the following rules apply for any local 

search methods: 

S ( , ')s s s 's

' (s N s∈ )

1. It should be easy to generate solutions in . S

2. For each solution , there should be a path linking to an optimal solution. Ss∈

3. The solutions in the neighbourhood of  should be in some sense close to  (strongly 

correlated to ). 

s s

s

It is important to define neighbourhoods in which it is possible to determine the best 

solution within a reasonable small amount of time. 
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5.1 Single move 

Due to its simplicity this kind of move was considered initially and consists in the 

algorithm shown in Figure 3. 

 

1. Select a lesson i randomly 
2. Select randomly a new time slot from the set  iH
3. Verify the hard constraints: 

3.1. If it satisfies the hard constraints put the lesson in the new 
time slot 

3.2. .If it doesn’t satisfy the hard constraints leave the lesson 
outside the timetable (time slot ) 0h

Figure 3 Single move algorithm. 

This kind of move is identical to several moves described in literature [9][18][20]. In 

spite of its simplicity as it is referred in [1] this move allows a well balanced mix of 

lessons among all time slots. The size of this neighbourhood is, 

 ( )( ) 1N s l p= × −  (3) 

Where l  is the number of lessons and p  is the number of time slots. 

5.2 Single move with heuristic improvement 

 

1. Execute a single move with lesson i (Figure 3) 
1.1. If lesson i is scheduled select randomly other lesson j from the 

same time slot ij ≠  
1.2. If lesson i isn’t scheduled select randomly other lesson ij ≠  

from the complete set of lessons. 
2. Schedule lesson j in its “best” time slot 
Obs: “best” in the sense of the cost function value. 

Figure 4 Single move with heuristic improvement. 

As many authors suggest [14][15][16] it would probably be better to walk through the 

search space only among local optimum. Nevertheless, since it is applied many times, 

this heuristic improvement should be easy to compute. With this in mind we define the 

algorithm based on the single move with a simple heuristic improvement (Figure 4). 
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Figure 5 Single move with heuristic improvement schematic diagram. 

5.3 Double move 

This kind of move, also called pairwise interchange, is used in many types of 

combinatorial problems. It can be considered as an extension of the first one. It is 

identical to some other implementations of a neighbourhood operator [6]. 

 

1. Select randomly two lessons ji ≠  

2. Exchange the time slots of each lesson 

3. If any of the two lessons isn’t scheduled choose the “best” time 
slot for the other 

Figure 6 Double move adapted to the timetabling problem. 

The size of this neighborhood is 

 ( 1)( )
2

l lN s −
=  (4) 

Where  is the number of lessons. Usually the number of time slots is much smaller 

than the number of lessons. The size of this neighbourhood is then greater than the first 

one and so better results one should expect to get with this kind of move. 

l

Nevertheless for real problems the size of this neighbourhood is quite large, for 

instance, if there are 1000 lessons, there will be 499500 neighbours for each solution. 

However it is known that only a fragment of this number of neighbours can actually 

improve the quality of a solution. Normally, the exchange of two lessons of two 

different classes deteriorates the quality of the solution. 

So, if we limit the exchanges of lessons belonging to the same class the number of 

neighbours would be, 
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 ( )
1

1
( )

2

C
c c

c
c

l l
N s

=

−
=∑  (5) 

Where  is the number of lessons belonging to class c. In the above example, if we 

have 50 classes and each class have 20 lessons, which makes a total of 1000 lessons 

(same number as above). The size of this reduced neighbourhood would be of 9500 

neighbours. 

cl

Without considering compound lessons the total number of lessons is given by, 

 
1

C

c
c

l
=

= l∑  (6) 

And if each class have the same number of lessons expression (6) will become 

cl C l= × . The ratio between these two neighbourhoods will be equal to, 

 
( )
( )

1( ) 1 11
( ) 1 1

c

c c c c

C lN s C
C C

N s l l l
⋅ − − ⎛ ⎞

= = + ≈ +⎜ ⎟− − ⎝ ⎠
C≈  (7) 

Where ( )N s  is the neighbourhood size associated with the double move and ( )cN s  is 

the neighbourhood size related with the double move intraclasses. As it can be seen by 

equation (7) the ratio between the sizes of these two neighbourhoods is approximately 

proportional to the number of classes. 

6 COST FUNCTION 

The cost function plays a key role in any optimization problem. It is through its 

calculation that one can measure the quality of any solution. Hence its correct definition 

is essential for the behaviour of any search algorithm. Our cost function is given by the 

following expression: 

 ( ) k k
k

f s w= C∑  (8) 

Where  is a point in the search space (can be a partial solution) and the values  

represent each of the objectives that we are trying to optimize, weighted by a factor . 

s S∈ kC

kw
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This weight translates the relative importance of the related constraint. The objective of 

any search algorithm will be to find an optimum solution s∗  that minimize ( )f s . 

Constraint Description 

0C  Duration of lessons that aren’t yet scheduled in time slots. 

2,1C  Number of overlaps in time slots.  
 (1-classes; 2-teachers) 

4,3C  Number of time slots exceeding the maximum allowed per day   
(3-classes; 4-teachers) 

6,5C  Number of time slots exceeding the maximum consecutive time slots allowed.   
(5-classes; 6-teachers) 

9,8,7C  Number of preferable time slots filled   
(7-classes; 8-teachers; 9-subjects). 

11,10C  Number of idle time slots (10-classes; 11-teachers) 

12C  Duration of lessons without a room assigned. 

15,14,13C  Number of time slots that are forbidden that are filled with lessons  
(13-classes; 14-teachers; 15-subjects) 

16C  Total number of teaching days for teachers. 

17C  Number of repetitions of lessons of the same subject per day. 

18C  Number of time slots that doesn’t satisfy the predefined space between lessons. 

Table 1 Constraint set. 

In our problem there is one objective that is clearly much more important than the rest 

which is the scheduling of all lessons. As we have stated before partial solutions make 

part of the search space. In order to do that and following the same idea expressed in [4] 

it is defined a constraint  that represents the sum in time slots of all unscheduled 

lessons. The weight that affects this constraint is the only one that the user can’t modify 

and it is computed as follows: 

0C

  (9) 0
1

K

k k
k

w p
=

= ∑ w

Where  is the number of constraints defined to the specific problem and K kp  is the 

maximum value that one can violate constraint  if a lesson is scheduled in a given 

time slot. For all the move operators defined above the cost function is computed 

incrementally, i.e., it is only computed the change in cost between the new solution and 

the old one. 

k
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7 COMPUTATIONAL RESULTS 

The objective of this work it was to compare the behaviour of two well known types of 

moves applied to the timetabling problem. In order to do this we have applied a simple 

Hill-Climbing algorithm to each of the neighbourhood operators. 

We have tested in three typical Portuguese schools chosen among almost 100 schools of 

different sizes and systems. The data is shown in Table 2. 

Data 
ISEL 

(DEEA)
C1 

EST 
C2 

Escola Sec.  
Fernando Namora 

C3 

Classes 21 124 54 

Teachers 79 208 112 

Subjects 250 1345 492 

Rooms 21 90 50 
#Lessons 
(#Duration in time slots) 

359 
(1135) 

1908
(3175) 

1357 
(1660) 

Table 2 Three Portuguese schools. 

Every test was made with real data, this means that, every constraint and the 

correspondingly weight was defined by each school. 

It is hard to tell, just by looking to the values of Table 2 which is the most difficult 

problem. If we were only concerned with dimension then clearly C1, C3, C2 would be 

the order of increasing difficulty. 

However, the constraints associated with each problem can modify this order. We have 

defined a ratio identical to the one expressed in [8][9], in order to quantify the difficulty 

of each problem. 

 lessons

free

D
T

η =  (10) 

There is a coefficient per classes, teachers, subjects and rooms and  represents 

the total of time slots needed for the lessons for each class, teacher, subject and room. 

 is the number of free time slots for scheduling the related lessons, i.e., is equal to 

lessonsD

freeT

iH∪  of the related lessons (belonging to a class, teacher, subject, etc.). η  is a real 

value that must be in the interval [ ]0,1 . 0 means that there isn’t any lesson to schedule 

or they are all predefined. 1 means that the problem in hand is very “tight”. If this value 
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rises above 1 it means that the problem in matter does not have a single feasible 

solution. 

Classes Teachers Subjects 
 

Total Avg. Worse Total Avg. Worse Total Avg. Worse 
Avg. 

C1 0,844 0,859 1,00 0,171 0,177 0,37 0,085 0,089 0,36 0,375 

C2 0,740 0,747 0,88 0,185 0,197 0,50 0,076 0,079 0,50 0,341 

C3 0,636 0,635 0,81 0,455 0,458 0,94 0,138 0,145 0,57 0,413 

Table 3 Density ratio η  for classes, teachers and subjects. 

In Table 3 is shown the total, average and worse values for classes, teachers and 

subjects (the room constraints were relaxed) of η . The last column represents the 

average of these values. 

We executed 1000 times Hill-Climbing algorithm for each neighbourhood move. For 

C1 we run with the steepest descent Hill-Climbing, for the other two we run with 

random descent because of the neighbourhood’s size. 

 SMHS DMI 

C1 20,9% 56,7% 

C2 4,7% 15,3% SM 

C3 7,4% 22,5% 

C1  45,6% 

C2  8,9% SMHS

C3  16,5% 

Table 4 Improvement of Single Move Heuristic Search (SMHS) over Single Move and Double Move Intraclass over 
the other two. 

The results obtained can be summarized in Table 4, where we see that the double move 

intraclass is clearly the best one. But as important as to see what is the best 

neighbourhood operator is also to check in what time can we get this result. 

Figure 7 shows the best run of each of these operators for C1. We see that every 

operator takes almost the same time to converge and the double move intraclass shows 

the best value. 
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Figure 7 Best cost  vs. #evaluations of cost function for each operator move for C1 school. 

8 CONCLUSIONS 

As Burke et. al. [3] refer people in general are not interested in solving their 

optimization problems to optimality or even close to optimality. They are more often 

interested in “good enough – soon enough – cheap enough” solutions to their problems.  

We also think that good choices of specific parts of each problem are fundamental for 

the success of any search algorithm. As [21] showed there are no algorithms either 

deterministic or stochastic behaving the same on the total set of search and optimization 

problems defined on a finite and discrete domain.  

In this work we analyze two well known neighborhood operators adapted to the 

timetabling problem. We verify for our problem that the double move intraclass always 

showed a better performance than single move even if this is improved with a heuristic 

method. The tests were made using real data from three different Portuguese schools. 

In this work we didn’t emphasis on the computation of the cost function: But this is also 

a key issue for any iterative algorithm, as it is done a lot of times it should be done 

efficiently. The move operators that we implemented here also permit that the cost 

function should be computed in an incremental fashion. 

It is beyond the scope of this paper but we have also tried these neighborhood operators 

with significant success with a metaheuristic described in [17]. 
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