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Abstract. The Channel Assignment Problem can be defined as assigning a 
minimum number of radio frequencies to a set of transceiver/receiver units 
without violating given constraints, in particular the frequency separation that 
must exist between two given channels to avoid interference. Being an NP-
complete problem, finding good quality solutions increases in difficulty as the 
number of transceiver/receiver units increase. Previous approaches for solving 
the channel assignment problems have used graph colouring, heuristic ap-
proaches, local search, meta-heuristics and genetic algorithms. In this paper, we 
present a greedy local search, combined with a monte carlo algorithm as an ac-
ceptance criteria. Our results are able to match lower bound conditions and beat 
existing approaches. Computational results are given. 

 

1. Introduction 
The use of cellular communication technology continues to grow and shows no 

signs of slowing up in the foreseeable future. With the ability to provide instant con-
nectivity at anytime, anywhere in the world, cellular communications is gradually be-
coming the communication method of choice for many users. This can be witnessed 
by the proliferation of mobile handsets and the prediction that many people will dis-
pense with their landline, preferring instead to rely on their mobile handset. As the re-
quirement for cellular communication increases, efficient usage of the limited radio 
channels available is necessary in order to cope with the additional services and addi-
tional mobile subscribers. To meet the increase in channel demand, mobile operators 
have to increase the number of base stations. This, in turn, leads to the need to utilise 
cell splitting (a cell is the area covered by a base station) techniques and optimise fre-
quency reuse (use the same channel repeatedly). Of course, the operators also have to 
maintain a minimum level in the quality of service that they offer [1].   

In cellular communication, a duplex traffic channel is established for receiving 
and transmitting a signal between a base station and a mobile terminal. The mobile 
terminal, situated within the base station coverage area (cell), is able to use that chan-



nel for a voice call or for data communication. The same channel (co-channel) can be 
simultaneously used in other base stations subject to a minimum reuse distance be-
tween channels. A complete cellular communication network consists of thousand of 
cells (each with a base station) in order to cover the large, geographic, area required to 
give as a wide coverage as possible to the end users. In fact, the network is split into 
clusters (typically containing 21, 25 or 55 base stations) and the frequency assign-
ments in one cluster can be applied to other clusters in that network. 

With a limited frequency spectrum available, the main task of cell design is to op-
timise the use of the available frequency bandwidth. This is known as the channel as-
signment problem and is an active area of research (for example, see [2]).The channel 
assignment problem can be defined as assigning a minimum number of radio frequen-
cies to a set of transceiver/receiver units without violating given constraints. In par-
ticular a frequency separation must exist between two given channels to avoid inter-
ference. Being an NP-complete problem, finding good quality solutions increases in 
difficulty as the number of transceiver/receiver units increase. 

The channel assignment problem can be categorised into three different forms, 
these being Fixed Channel Assignment, Dynamic Channel Assignment and Hybrid 
Channel Assignment (a combination of fixed and dynamic) [3]. In fixed channel as-
signment, the channels are permanently assigned to the base stations based on prede-
termined traffic demand and interference constraints. Therefore, in the fixed problem, 
it is difficult to adapt to any changes in either channel demand or interference.  In dy-
namic channel assignment, the channels are placed into a central pool and are dy-
namically assigned upon request by a base station. Once the call is completed, the 
channel will be returned to central pool and can be used by another base station. Dy-
namic assignment provides flexibility and traffic adaptability at the cost of higher 
complexity. Also, under heavy traffic conditions, dynamic strategies are less efficient 
when compared to fixed strategies [3]. Since heavy traffic is expected in the future, 
the efficiency of fixed schemes is highly desirable [4]. The approach discussed in this 
work utilises a fixed channel assignment method. 

 

2. Related Work 
 

Many researchers have investigated the fixed channel assignment problem, utilis-
ing approaches such as graph theory [5], heuristic approaches [6,7,8], local search [9] 
and meta-heuristics [10,11,12,13], including genetics algorithms [14]. 

Zoellner and Bell [5] used node-colour and node-degree to rank the ordering of 
the cells. They used two assignment strategies, frequency exhaustive strategy and re-
quirement exhaustive strategy to assign the channels. In the frequency exhaustive 
strategy, each call is assigned with the least the possible channel assignment.  In the 
requirement exhaustive strategy, the first call is assigned to channel 1 and every other 
call is checked to see if it can also be assigned channel 1. The channel number is then 
incremented and the process repeats until all calls have been assigned to a frequency. 
Box [6] used a simple iterative technique to assign channels according to assignment 
difficulty. His approach ranked the channels based on how difficult it would be to as-



sign that channel to a base station.  Sivarajan et al. [7], used the same approach as [6], 
namely a sequential cell ordering to give eight channel assignment algorithms. They 
express the channel assignment problem as a minimum span problem which can be 
viewed as a generalised graph colouring problem. They used two ordering of the calls, 
row-wise ordering and column-wise ordering with the combination of cells ordering 
proposed by Zoellner and Bell [5]. Their approach gave better solutions than existing 
algorithms. 

Wang and Rushforth [9] implemented a two-phase adaptive local search algo-
rithm. They used a deterministic-probability neighbour-generation method to create a 
new neighbour configuration. They select a call with maximum frequency, and swap 
with another call which is randomly selected from the call list, to give a new 
neighbour configuration. The algorithm has been applied to several existing bench-
mark problems (see table 6) and the solutions obtained outperformed existing algo-
rithms. Chakraborty [8] proposed a fast heuristic algorithm that created a pool of valid 
solutions using a quandary representation. He tested the algorithm against twenty 
benchmarks problems (see table 6) and set the current benchmarks that we compare 
against in this paper.  

Kunz [10] used a neural network algorithm based on Hopfield and Tank�s model 
to minimise the cost function. Funabiki and Takefuji [11] proposed a parallel algo-
rithm based on neural networks. The algorithm, which does not require a rigorous 
synchronisation procedure, runs on sequential and parallel machines. Kim et. al [12] 
used a modified discrete Hopfield neural network to avoid getting stuck in local min-
ima.  

Duque-Anton et. al [13] proposed a simulated annealing approach. The interfer-
ence relationship between cells was represented by a cost function, which they at-
tempted to minimise. Lai and Coghill [14] used a genetic algorithm approach. They 
used a string structure to represent the channel required for each base station, where 
the total length of each string is the sum of channels required. They used partially 
matched crossover and a basic mutation probability, with two extra parameters in or-
der to bias co-site and co-channel constraints in their fitness function. They claimed 
that their approach is elegant and simple. In addition, new rules can be easily added 
without corrupting existing rules. 
 

3. Problem Description 
Radio channels are represented by the positive integers 1, 2, 3,�,m where m is a 

maximum allocation  of the spectrum bandwidth. The basic model of the channel as-
signment problem can be represented as follows (mostly adopted from [7,9]) 
a. N : The number of cells in the network. 
b. di : The number of radio channel required in cell i (1≤ i ≤ N) in order to satisfy 

channel demand. 
c. C : Compatibility matrix, C=(cij)NxN denotes the frequency separation required 

between cell i and cell j  
d. Callik : Cell i with call k where 1≤ i ≤ N, 1≤ k ≤ di. 
e. fik : A radio channel is assigned to Callik, where  fik Є a set of radio channel F.  



f. Frequency separation constraint -  fik - fjm ≥ cij, for all i,j,k,m (i ≠ j ,k ≠ m), cij is 
defined in Compatibility Matrix, C. If i=j, it�s become co-site constraint. 

g. TotalAssignCh: The total of radio channel to be assigned in the system can be 
shown as 
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Therefore, the objective of MS-CAP is [15] 

Minimise m 
Subject to 

∑ =
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m

k
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 for 1≤ i ≥ N 

|k � l | ≥ Cij    for 1≤ k,l ≥ m and 1≤ i,j ≥ N such that fik=fjl=1 
fik = 0 if channel k is not assigned to cell i, otherwise 1, for 1≤ k,l ≥ m and 

1≤ i,j ≥ N 
 

 

3.1 Example  
We consider here an example taken from Sivarajan et. al [7], in order to further ex-

plain the notation presented above. We also show how this example can be repre-
sented as a graph colouring problem. This problem consists of four cells.  
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Where C is compatibility matrix and D is the traffic demand vector. 
 

In order to make it clearer, the following descriptions can be read in conjunction with 
the problem description above. 

 
a. The number of cells in the network, N=4. 

 
b. The number of radio channels required in each cell 

 
Cell 1 Cell 2 Cell 3 Cell 4 

1 channel 1 channel 1 channel 3 channels 
 

Table 1. Channel demand 
 



c. Minimum frequency separation required between cell i and cell j  
 
 Cell 1 Cell 2 Cell 3 Cell 4 

Minimum 
Frequency 
separation dis-
tance 

Co-site : 5 
Cell 2/4 
 

Co-site : 5 
Cell 1/4 
Cell 4/1 
 

Co-site : 5 
Cell 4/2 
 
 

Co-site : 5 
Cell 3/2 
Cell 2/1 
 

 
Table 2. Constraints based on compatibility matrix C 

 Notation: The co-site constraint shows the minimum separation between two fre-
quencies assigned to the same cell. i/j indicates that for the cell to which that column 
refers, there must be a separation of j between that cell and cell i. 

 
d. The call list that needs to be assign to each cell 
 

 Cell 1 Cell 2 Cell 3 Cell 4 
Call list Call11 

(i=1,k=1) 
Call21 
(i=2,k=1) 

Call31 
(i=3,k=1) 

 

Call41, Call42, 
Call43 (i=4, 
1≤k≥3) 

 
 

Table 3. Call list 
 

e. A radio channel is assigned to serve a call in the each cell 
 

 Cell 1 Cell 2 Cell 3 Cell 4 
Call list 1 call  1 call  1 call  3 calls 
Radio chan-
nel, fik 

f11 f21 f31 f41 f42 f42 

 

Table 4. Radio channel at every cell 

 
f. Frequency separation constraint  
 

 Cell 1 Cell 2 Cell 3 Cell 4 
Cell 1 - |f21- f11|≥4 - - 
Cell 2 |f11- f21|≥4 - - |f4k- f21|≥1 
Cell 3 - - - |f4k- f31|≥2 
Cell 4 - |f21- f4k|≥1 |f31- f4k|≥2 |f4k- f4m|≥5 

      note:1≤k,m≥3 

Table 5. Frequency channel separation constraint  

 
g. The total of radio channel that is to be assigned 

 TotalAssignCh= (d1+d2+d3+d4)=6 



We can model the above example as a graph coluring problem. Let define the ver-
tices C of graph G consist of set of calls to be assigned (in this case 6 calls i.e. call11, 
call21, call31, call41, call42, call43). An edge, E → e(callij,callkl) for graph G can be de-
fined as a constraint between callij and callkl . These is shown in figure 1: 
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Figure 1: CAP Graph representation 

 
The task is to schedule the calls such that each �clashed� call will be assigned a differ-
ent channel. Using the concept of graph colouring, the channel is represented by the 
colour  and our objective function is to minimise the number of colours used. There-
fore, this problem can be solved using graph colouring method which is widely used 
in scheduling and timetabling as well as in the telecommunication industry.     
 

In general, we have two objectives in solving the channel assignment problem, 
namely (from [16]): 
(1). Given a traffic demand, base station number and compatibility matrix, find the 

minimum number of frequency channels with free engineering interference i.e. 
Minimise the total bandwidth (span) of radio channels  

s.t. traffic demand and interference constraint       (CAP1) 
 
(2). Given a number of radio channels, a number of base stations, traffic demand and 

compatibility matrix, minimise severity of channel interference i.e. 
Minimise severity of channel interferences 

s.t. demand constraints (CAP2) 
 
Two solution examples, based on the above example are shown below [16]: 
 

a) Solution of CAP1 
   Channel Number 

  1 2 3 4 5 6 7 8 9 10 11 
1            
2            
3            

Cell 
Number

4            

Figure 2: An interference free assignment 



 
 

b) Solution of CAP2 (given only 10 channels) 
Channel Number 

  1 2 3 4 5 6 7 8 9 10 
1           
2           
3           

Cell 
Number 

4           

Figure 3. A near interference free assignment 

At cell 4, there is weak interference between channel 6 and channel 10. The differ-
ence between channel 6 and channel 10 is 4 but the co-site constraints at cell 4 re-
quires a separation of 5 (c44=5). 

 
In our approach, our objective function is to obtain a minimum span (CAP1). The 

minimum span is determined by call or vertex ordering. For example, referring to the 
above example, if the call ordering is {call11, call21, call31, call41, call42, call43}, the 
span is 13 but if call ordering is {call41, call42, call43, call21, call31, call11}, the span is 
11.   

 

4. The Algorithm 
We use the local search framework proposed by Wang and Rushforth [9] to define 

the solution space and objective function. 
 

Solution Space S : The set of possible ordered list of calls. 
Objective function : f(S)max Є m,  the maximum frequency for solution S Є S. 

 n : neighbourhood structure. 
 
In our proposed method, we have a two stage algorithm, namely a probabilistic 

stage and a new neighbour generation stage. 
 

 

4.1 Probabilistic stage 
In this stage, all the information such as network size, N, channel demand, D and 

compatibility matrix C are initialised. The next step is to generate a random number 
of calls to be assigned first and then use a frequency exhaustive strategy to assign the 
channel to the selected call. This step will be repeated until all the call assignments 
are completed to give an initial call order list S0 Є S  and initial objective function f(S0) 
Є m.  The algorithm is shown below: 

 



Step 1 : (Initialisation) 
(A) Choose initial solution S0 Є S; 
(B) Record the best obtain solution Sbest = S0 and f(Sbest)= f(S0); 
 

 
4.2 New neighbour generation stage 

With the initial call list, so, from the probabilistic stage, the algorithm now uses a 
deterministic approach and selects the last call, callik max (that is the call with the high-
est assigned channel number, f(S0)max ). This call is deleted from the call list and a new 
location is sought where it can be re-inserted, starting from the beginning of the list. It 
will create new neighbour, S new with objective function,  f(S new). This step will be re-
peated until a stopping criteria is met, which is either:  

• The lower bound from the benchmark problem is obtained. 
• The maximum number of iterations, itermax, is reached. We defined , itermax = 

Cell size * Minimum demand. 
• RunTime is expired (we use 400 seconds). 
 

The algorithm is shown below (continue from section 4.1 step 1): 
Step 2 :  (Choice and termination) 
(A) Choose an S new Є n(S0); 
(B) Compute δ= f(S new) - f(S0); 
(C) If the acceptance criteria is true, then accept S new (and proceed to Update); 
(D) If S new  is rejected and stopping condition=false, then return to Step2; 
(E) Terminate by a stopping condition. 
 
(Update) 
Re-set S0 = S new, and if f(S new)<f(Sbest), perform  step 1(B) : Initialisation; 
Return to step 2 if stopping condition=false. 

 
4.3 Acceptance Criteria 

The new solution acceptance criterion is important in order to escape from local 
minima. In our approach, we use an Exponential Monte Carlo with counter (EMCq) 
as an acceptance criteria. This �parameter free� acceptance criteria is extended from 
Monte Carlo method discuss in [17] has shown to be effective in another domain 
(printed circuit board assembly) [18].   

The basic EMCq acceptance criteria can be described as follows (mostly adopted 
from [18]). 

 
1. Compute α=f(snew)-f(so) 
2. If α ≤ 0, accept snew(update objective function, f(sbest)= f(snew))  
3. Else: Accept snew with EMCq probability. If snew is rejected and stop-

ping condition=false, generate new neighbour. 
 
The EMCq probability is computed by e-θψ  

Where : θ= α*t   t = computation time 
ψ = counter of consecutive non improvement iterations 

 



The idea behind this acceptance criteria is that we only accept non-improving 
moves after all the neighbours of the current solution has been searched without any 
improvement in solution quality. When  α  is small and we have not found a better 
solution for a long time,  non-improving moves are more likely to be accepted [18].   

For the comparison, we also used random descent (RD) and steepest descent ac-
ceptance criteria (SD). RD will accept only first improving move meanwhile SD will 
only accept the best move in neighbour structure. 

5. Testing and Results 
We have implemented and tested the above algorithm on a Pentium III-700 MHz 

computer. We have compared our performance with [8], which proposed to generate a 
population of random valid solutions using a quadnary representation [0,+1,-1,+9] 
(these values represent the following, {assignable ,used ,unassignable ,unused}. 

We implemented three different network sizes {21, 25, 55} with different com-
patibility matrices, C, and traffic demands, D. In this work we use a random construc-
tive heuristic to generate the initial solution. For the purpose of comparison of our al-
gorithm, we used three different initial solutions.  The results as presented in table 6, 
7 and 8.  

 
 

Test C_Matric(Cij)/  
Demand(Di) [8] 

Trivial 
Lower 
Bound 

Best Solu-
tion by [8] 

Initial Span 
 

Best Result Time Taken  
to produce 
best result (s) 

1 C1_21/D1_21 533 533 539/553/541 533/533/533  0.9/0.2/0.3 
2 C1_21/D2_21 309 309 313/310/313 309/309/309 0.1/0.1/0.1 
3 C2_21/D1_21 533 533 616/614/641 533/533/533  0.3/0.4/0.5 
4 C2_21/D2_21 309 309 335/352/359 309/309/309 1.0/1.7/0.3 
5 C3_21/D1_21 457 457 460/467/489 457/457/457  0.1/0.1/0.2 
6 C3_21/D2_21 265 265 267/272/270 265/265/265  0.3/0.1/0.1 
7 C4_21/D1_21 457 457 602/597/586 457/457/457 4.4/4.2/5.7 
8 C4_21/D2_21 265 280 331/340/344 273/273/273 192/209/75 
9 C5_21/D1_21 381 381 417/422/431 381/381/381 0.2/0.2/0.1 
10 C5_21/D2_21 221 221 236/234/245 221/221/221 0.2/0.1/0.4 
11 C6_21/D1_21 381 463 593/541/595 440/435/436 211/344/110 
12 C6_21/D2_21 221 273 318/333/343 269/268/269 60/71/27 
13 C7_21/D1_21 305 305 354/370/371 305/305/305 1.2/2.0/1.8 
14 C7_21/D2_21 177 197 208/221/221 185/185/185 118/22/17 
15 C8_21/D1_21 305 465 535/538/522 447/448/444 43/117/364 
16 C8_21/D2_21 177 278 324/320/349 271/273/272 33/76/371 
17 C1_25/D3_25 21 73 79/77/78 73/73/73 0.4/0.2/0.2 
18 C1_25/D4_25 89 121 216/208/216 200/200/200 49/1.0/64 
19 C1_55/D5_55 309 309 345/344/333 309/309/309 0.9/1.0/0.8 
20 C1_55/D6_55 71 79 102/115/90 73/73/72 2.6/17/12 

Table 6. Results over 3 different initial solutions using EMCq acceptance criteria 
 

 



Test C_Matric(Cij)/  
Demand(Di) [8] 

Trivial 
Lower 
Bound 

Best So-
lution by 
[8] 

Initial Span 
 

Best Result Time Taken  
to produce 
best result (s) 

1 C1_21/D1_21 533 533 539/553/541 533/533/533  0.2/0.2/0.3 
2 C1_21/D2_21 309 309 313/310/313 309/309/309 0.1/0.1/0.1 
3 C2_21/D1_21 533 533 616/614/641 533/533/533  0.5/0.4/0.4 
4 C2_21/D2_21 309 309 335/352/359 309/309/309 0.3/0.4/0.7 
5 C3_21/D1_21 457 457 460/467/489 457/457/457  0.1/0.1/0.1 
6 C3_21/D2_21 265 265 267/272/270 265/265/265  0.1/0.1/0.1 
7 C4_21/D1_21 457 457 602/597/586 457/457/457 2.7/2.6/5.2 
8 C4_21/D2_21 265 280 331/340/344 280/277/278 3.7/2.8/3.4 
9 C5_21/D1_21 381 381 417/422/431 381/381/381 0.2/0.1/0.3 
10 C5_21/D2_21 221 221 236/234/245 221/221/221 0.2/0.1/0.1 
11 C6_21/D1_21 381 463 593/541/595 451/456/455 8.2/3.4/8.1 
12 C6_21/D2_21 221 273 318/333/343 278/274/275 30/3.8/2.7 
13 C7_21/D1_21 305 305 354/370/371 305/305/305 1.1/2.0/1.6 
14 C7_21/D2_21 177 197 208/221/221 187/186/188 6.2/3.2/2.2 
15 C8_21/D1_21 305 465 535/538/522 447/448/444 43/117/364 
16 C8_21/D2_21 177 278 324/320/349 277/282/282 7.7/4.5/5.1 
17 C1_25/D3_25 21 73 79/77/78 73/73/73 11/16/30 
18 C1_25/D4_25 89 121 216/208/216 201/201/201 7.1/2.0/6.6 
19 C1_55/D5_55 309 309 345/344/333 309/309/309 1.1/1.0/0.7 
20 C1_55/D6_55 71 79 102/115/90 75/74/75 1.4/0.7/1.8 

Table 7. Results over 3 different initial solutions using RD acceptance criteria 
 

Test C_Matric(Cij)/  
Demand(Di) [8] 

Trivial 
Lower 
Bound 

Best So-
lution by 
[8] 

Initial Span 
 

Best Result Time Taken  
to produce 
best result (s) 

1 C1_21/D1_21 533 533 539/553/541 533/533/533  0.2/6/3.3 
2 C1_21/D2_21 309 309 313/310/313 309/309/309 0.3/0.1/0.1 
3 C2_21/D1_21 533 533 616/614/641 533/582/601  46/14/1.4 
4 C2_21/D2_21 309 309 335/352/359 328/341/329 0.9/0.4/4.7 
5 C3_21/D1_21 457 457 460/467/489 457/457/457  1/2.8/16 
6 C3_21/D2_21 265 265 267/272/270 265/265/265  0.2/0.3/0.1 
7 C4_21/D1_21 457 457 602/597/586 562/494/569 16/71/10 
8 C4_21/D2_21 265 280 331/340/344 316/310/313 3.2/3.3/10 
9 C5_21/D1_21 381 381 417/422/431 381/381/381 24/28/36 
10 C5_21/D2_21 221 221 236/234/245 226/223/231 3.2/1.5/3.2 
11 C6_21/D1_21 381 463 593/541/595 550/492/556 51/46/25 
12 C6_21/D2_21 221 273 318/333/343 300/300/295 27/27/16 
13 C7_21/D1_21 305 305 354/370/371 338/350/336 18/25/44 
14 C7_21/D2_21 177 197 208/221/221 200/210/201 5.8/9.5/16 
15 C8_21/D1_21 305 465 535/538/522 531/533/495 0.3/49/18.7 
16 C8_21/D2_21 177 278 324/320/349 307/293/316 12/27/25 
17 C1_25/D3_25 21 73 79/77/78 76/74/76 0.7/0.6/0.4 
18 C1_25/D4_25 89 121 216/208/216 212/204/205 6.5/2.3/22 
19 C1_55/D5_55 309 309 345/344/333 318/327/317 37/16/12 
20 C1_55/D6_55 71 79 102/115/90 81/80/87 7.5/7.1/1.3 

 Table 8. Results over 3 different initial solutions using SD acceptance criteria 



6. Discussion 
In the above tables we have shown the 20 instances test which have been used in 

previous work.  In the 4th column, the previous best result of previous work [8] is 
shown. We only make a comparison with [8] because it is the only previous work that 
used all 20 instances. In 5th column (initial span), we show the three different initial 
solutions, followed by our best achieved result and the time taken in column 6 and 7.  

Table 6 shows the result of the greedy local search with an EMCq acceptance crite-
ria. For the easier test instances (test 1 to 7, 9, 10 and 13), our algorithm is able to 
match the calculated lower bound and the performance is similar to the previous ap-
proach in [8]. We also can see that with different initial solutions, our algorithm man-
ages to converge to the lower bound for all initial solutions. For the difficult bench-
marks problem such as test 11 and 12, even though we cannot match the lower bound, 
but we can see that the percentage of improvement from initial span is around 25% 
and 18% respectively.  

Table 7 shows the result of random decent local search. In this case, the algorithm 
only accepts a first improving. The performance of this acceptance criteria is similar 
to EMCq acceptance criteria for the easier problem, but for the difficult problems, it 
gets stuck in a local minima due to their being no diversification in the search strat-
egy. For example, for test 11, the best span is 451 compare to 435 for EMCq. 

Table 8 shows the result of steepest descent local search. The performance of SD 
was outperformed by EMCq and RD. 
 

7. Conclusions and Future work 
The channel assignment problem is one of the real world problems within the tele-

communications industry. The number of available channels is fixed but demand is 
increasing due to additional mobile subscribers. In our study, we use simple local 
search with EMCq acceptance criteria and compare with random descent and steepest 
decent acceptance criteria. Based on the experimental results, we conclude that EMCq 
is superior when compared to random descent and a steepest decent acceptance crite-
ria.  

Our future work will refine our algorithm in order to further improve the results. 
We are considering the following areas. 

• Using different strategies to generate initial solutions and study the effect of 
using good initial solution because currently, we are using randomly gener-
ated solutions.  

• Using a different neighbour generating strategy such re-insert the call based 
on random selection. 

• Implement additional acceptance criteria to compare against those  
(EMCq,RD,SD) reported in this paper. 
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