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Abstract: In this paper we introduce, and solve, an examination timetabling problem 
at University Technology MARA (UiTM). UiTM is the largest university in 
Malaysia.  It has 13 branch campuses and offers 144 programs delivered by 18 
faculties.  We discuss their examination timetabling problem with respect to its size, 
complexity and constraints. We analyse and process their real world data, and 
produce solutions utilising a tabu search based hyper-heuristic framework. Since this 
is a new dataset and no solutions have been published in literature, we can only 
compare our results with an existing manual solution.  We find that our solution is at 
least 80% better with respect to proximity cost.  We also compare our approach 
against a benchmark dataset and show that our method can produce good quality 
results. 

1. Introduction 

Work on timetabling problems has been published since the 1960's (Appleby et al 
1960), (Csima and Gotlieb 1964). Since then, numerous researchers have been 
working on problems ranging from sports timetabling (Trick 2000), railway 
timetabling (Isaai and Singh 2001), (Caprara et al 2001), school timetabling 
(Abramson et al 1999), (Colorni et a 1998), (Ribeiro and Lorena 2001), (Hansen 
1995), (Schaerf and Schaerf 1996) and university timetabling (Awad and Chinneck 
1998), (Burke and Newall 1999), (Ergul 1995), (Marti et al 2000), (Ross et al 1998), 
(Thomson and Dowsland 1998), (Terashima Marin et al 1999), (White & Xie 2000). 

Most academic institutions face the problem of scheduling both courses and 
examinations in every semester or term.  As the difficulty of the problem increases, 
due to a large number of students, courses, exams, rooms and invigilator constraints, 
an automated timetabling system that can produce feasible and high quality timetables 
is often required. The timetabling procedure at universities and schools varies from 
manual timetabling, semi-automated timetabling to fully automated timetabling.  A 
survey conducted by Burke et al (1996) on 56 British universities discovered that only 
58% (32 universities) of their respondents use a computer at some stage in producing 
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their examination timetable and 21% (11 universities) of these have a scheduling 
system.  Only two universities use commercial software whilst the other systems were 
developed in house.  Thus, while commercialised software is available, such as, 
EXAMINE (Carter 1997 and Paechter et al 2000), SyllabusPlus (Forster 1995), 
ConBaTT (Goltz and Matzke 2000), OPTIME (McCollum and Newall 2000), and 
CelCAT (Rogalla 1997), many universities are yet to be convinced that an automated 
system will provide a satisfactory solution.  Universities may need to develop their 
own system or to customise a commercial system to fulfill their specific needs and 
requirements in timetabling.  Once a customised system is developed, it will also 
require full support with frequent update and maintenance due to changes in academic 
policy or education structure. 

An early survey by Comm and Mathaisel (1988) involving 1494 U.S. college 
registrars concluded that there was a large market for a computerised timetabling 
system and most registrars were unhappy with their current systems.  The survey 
conducted by Burke et al (1996) received feedback from 56 registrars of British 
Universities with regards to the nature of their examination timetabling problem, how 
they solved it (manual or automated) and what qualities were considered for a good 
examination timetable.  The survey showed that a computerised system must produce 
good quality timetables allowing some user intervention, it must be easy to use and 
comprehensive and compatible with any previous systems.  JISC (Joint Information 
System Committee) Technology Applications Programme (JTAP 1998) published 
findings from a questionnaire from which they received replies from 16 universities in 
the U.K. The universities were asked whether a central computerised system was in 
use and for their views on its effects.  The report concluded that centralising the 
whole process of room bookings, examination timetables and lecture timetabling was 
carried out in phases using a wide variety of software packages and there was a need 
for a full and complete management support for such systems. 

The above surveys show that a lot of computerisation has taken place over the years 
and there is ongoing research on new techniques and methods to solve timetabling 
problems so as to produce better quality solutions.  In this paper, we will focus on 
examination timetabling problem faced by universities.  Carter and Laporte (1997) 
defined the basic problem in examination timetabling as “the assigning of 
examinations to a limited number of available time periods in such a way that there 
are no conflicts or clashes”.  A timetable is feasible if all examinations can be 
scheduled and all other hard constraints are not violated.  Student conflict exists if at 
least one student is scheduled to sit for more than one exam at the same time.  This 
conflict is categorised as a hard constraint and should be eliminated in an examination 
timetable.  A proximity constraint is an example of a soft constraint that can be 
violated if necessary.  A weighted proximity cost is assigned whenever a student has 
to sit for two examinations scheduled at most 5 slots apart.  A lower proximity cost 
means that we have a good quality solution and our objective is to minimise the 
proximity cost.  Carter, Laporte and Lee (1996) have a set of benchmark examination 
timetabling instances from real examination problem datasets from various 
universities all over the world.  They applied a variety of constructive algorithms, 
with backtracking, based on graph colouring heuristics and they solve the problem 



with and without capacity constraint (capacitated and un-capacitated problem). The 
solution quality is measured by an objective function based on proximity cost.  A 
lower proximity cost indicates that, on average, a student will have his/her 
examinations spread over the length of his/her examination period and, therefore, will 
have more time to concentrate on each exam.  Burke, Newall and Weare (1996) 
introduced another dataset from the University of Nottingham that also includes room 
requirements and capacities.  They used a memetic algorithm and a weighted 
objective function for adjacent, overnight and unscheduled exams.  Burke, Newall 
and Weare (1998) apply some sequential heuristics and various ordering techniques to 
allocate exams to slots while not violating the clash and capacity constraints.  Merlot 
et al (2002) introduced two new datasets from the University of Melbourne that also 
includes two additional hard constraints: exam availability (exams preassigned to 
specific slots) and large exams (large exams scheduled in the first n slots). They used 
a hybrid algorithm (constraint method, simulated annealing and hill climbing) to find 
a feasible schedule and found that they have to relax the constraints (by adding 
additional slots to the large exams constraints) so as to produce a clash free timetable. 

All the datasets above are made public via ftp://ftp.mie.utoronto.ca/pub/carter/testprob 
and ftp://ftp.cs.nott.ac.uk/ttp/Data and http://www.or.ms.unimelb.edu.au/timetabling. 

We presented the examination timetabling problem from the University Technology 
MARA in Cowling, Kendall and Mohd Hussin (2002).  University Technology 
MARA (UiTM) is the largest university in Malaysia with a total number of students 
approaching 100,000.  The university has 13 branch campuses, one in every state in 
Malaysia with 144 programs offered by 18 faculties.  A common examination 
timetable is shared amongst all campuses and programs since students sitting for the 
same examination paper must take it at the same time, irrespective of their 
geographical location. 

Wan Ya and Baharudin (2001) from UiTM uses an examination scheduling program 
(developed in house, using the COBOL language, about 30 years ago) to produce a 
first draft of the examination timetable.  The timetable then goes through a manual 
update process by scheduling new courses and removing old ones. 

Apart from the constraints that are common for examination timetabling (Carter 1986; 
Carter and Laporte 1997; Schaerf 1999), UiTM has to consider the following 
additional constraint: If an exam falls on a state public holiday and there are students 
from that state sitting for the exam then the exam must be moved to another slot. 
Malaysia has a number of public holidays that are not shared between states.   

Data on available space for exams is not considered when moving exams and 
therefore every faculty, centre and branch campus needs to give prompt feedback on 
space availability for exams already scheduled.  Once the examination timetable is in 
its final draft, it is sent to all faculties and branch campuses for the assignment of 
rooms and invigilators. 



 

In the next section, we present a detailed description of the examination timetabling 
problem at University Technology MARA. Section 3 provides a description of our 
tabu search based hyper-heuristic and Section 4 shows how our algorithm works with 
this new large dataset and how it compares with the only other known solution to this 
problem. Section 5 concludes with a summary and presents future research directions.   

2.   UiTM Examination Timetable Problem Formulation 

2.1  Problem Description 

University Technology MARA (UiTM) is the largest university in Malaysia with 13 
branch campuses.  The Center for Integrated Information System (CIIS), UiTM has 
the responsibility for planning and managing the overall Information Technology 
strategy in UiTM and fulfilling administrative and academic needs. One of its 
information system modules, Integrated Student Information Systems (iSIS), was 
designed and developed as a collaborative project. This system offers 6 main modules 
encompassing the complete Student Life Cycle process, from Intake to Convocation 
and Alumni.  The 4 principal modules comprise the Student Intake System, Academic 
Affairs Systems, Student Affairs System and Student Accounting System.  Thirteen 
personnel headed by a senior information system officer provide support for the 
system and two information system officers are specifically assigned to the 
examination unit.  
 

No. Branch Campuses No. of  
Students 

No. of Student 
Exams 

Avg 
Exam Per 
Student 

1. Shah Alam 40,275 222,559 5.52

2. Melaka  4,447 25,334 5.70

3 Negeri Sembilan 315 1,913 6.07

4. Johor 4,057 22,109 5.45

5. Perak 5,366 31,518 5.87

6. Perlis 5,824 32,807 5.63

7. Kelantan 3,515 19,627 5.58

8. Terengganu 4,842 27,444 5.67

9. Pahang 4,607 27,221 5.91

10. Sarawak 4,800 25,618 5.34

11. Sabah 2,423 11,470 4.73

12. Penang 1,453 9,296 6.40

13. Kedah 2,751 15,285 5.56

 UiTM-03 (Total) 84,675 472,201 5.56

Table 1: Characteristics of UiTM Dataset 



We have been fortunate to get most of our examination data from the Center for 
Integrated Information System (CIIS). The data is classified by faculty and branch 
campuses.  The total number of students enrolled in Semester 2, 2002/2003 was 
84,675, course enrolment was 472,201 and total number of courses to be scheduled 
was 2,650. (see Table 1).  The data supplied from CIIS was in the form of, a list of 
exams that must be scheduled, a list of exams that must be scheduled at the same time 
(concurrent), a list of students and their course selection (split by campuses) and an 
examination timetable that was used in the May 2003 semester. We do not have any 
information regarding capacity or other hard constraints that were imposed via 
feedback by faculties or campuses.  The original list of exams has 2,650 exams to be 
scheduled, but after computing the enrolment for each examination using the student 
file, we had to remove examinations with zero enrolments even though these 
examinations were present in the examination timetable.  Examinations with zero 
enrolments will have no effect in the way we compute solution quality and therefore 
can be removed from the timetable. We removed 491 exams and we only need to 
schedule 2,159 examinations.  It is understandable that the supplied student list might 
not be accurate and up to date because the data processing involves many faculties 
and campuses.  

2.2 Problem Formulation 

 
We can represent the examination timetabling problem as follows: 

• E: A set of m examinations E1, E2,…..Em 

• S: A set of n slots S1, S2,…..Sn 

• U: A set of u campus U1, U2,…..Uu 

• A final exam timetable Tmn such that: Tik = 1 if exam i is scheduled in slot 
k, 0 otherwise. 

• CampusType = {A, B} where campus type A has half-day Saturday and 
full-day Sunday weekend and campus type B has half-day Thursday and 
full-day Friday weekend. 

• A conflict matrix Cmm such that: Cij = total number of students sitting for 
both exams i and j categorised by campus type. 

• A co-schedule matrix Rmm such that: Rik = 1 if exam i and exam k must be 
scheduled in the same time slot, 0 otherwise. 

The examination timetabling problem is to assign examinations to n number of slots 
subject to various constraints, so as to minimise various costs. The total number of 
slots is already fixed and examination scheduler must schedule examinations into at 
most n slots. There are 2,159 examinations with some exams being held concurrently.  
Even though each exam may have a different duration (120, 150 or 180 minutes), we 
will treat each exam as occupying a complete slot of 180 minutes. The total number 
of exam days is 20 and each day will have 2 slots (morning and afternoon), i.e. we 



 

will have 40 slots in which to assign examination.  We categorise each campus (A or 
B) to indicate which days or slots must not be used in assigning exams taken by 
students in that particular campus. Campuses in category A has weekend: half-day on 
Saturday and full-day on Sunday while campuses in category B has weekend: half-
day on Thursday and full-day on Friday.  The exam dates were from 20th April 2003 
to 10th May 2003 with 1st May as a public holiday across all campuses, so no exams 
can be scheduled on this day.  For this dataset, we are not concerned with other public 
holidays since none occur on a different day for different states.  On other occasions 
there might be a situation where a campus has a public holiday and others do not.  

2.2.1 Constraints 
 
Hard constraints are those which cannot be violated.  A timetable that violates a hard 
constraint will render it infeasible.  Such infeasibilities may be unavoidable in certain 
cases and universities have to take drastic measures to resolve the problem. 

The following hard constraints are present in the UiTM dataset:-  

a. Conflict: No student should sit for more than one exam in the same slot. 

 

 
∑∑∑

= = =

=
m

i

m

j

n

k
ijjkik CTT

1 1 1
0

If exam i and exam j are scheduled in slot k, the number of students sitting 
for both exam i and j (Cij) must be equal to zero, and this should be true for 
all exams already allocated. 

b. Co-schedule: Exams that must be scheduled together must be assigned the 
same time slot. 

 For all exams i: 
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 All exams that must be scheduled with exam i should be assigned to the 
same slot k. 

c. All exams must be scheduled: 
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Each exam, (E1, E2,…..Em) should be scheduled only once. 

2.2.2 Costs 
 
Other additional soft constraints that are specific to university requirements can be 
added to this problem.  We determine the cost of an examination timetable solution 
based on the penalty given if certain soft constraints are violated.  The soft constraints 
that we consider are as follows: 

a. Proximity cost: A proximity cost xs is given whenever a student has to sit 
for two examinations scheduled s periods apart: these weights are x1 = 16, x2 
= 8, x3 = 4, x4 = 2 and x5 = 1. Pik is the proximity cost if exam i is scheduled 
in slot k.  

The total proximity cost of a timetable is as follows: 

 

 
∑∑

==

n

k
ikik

m

i
PT

11

b. Weekend cost: The current examination timetable scheduler schedules 
exams during the weekend.  We can try to produce a better quality timetable 
by penalising exams that are scheduled during the weekend.  Weekends for 
category A campuses is half-day on Saturday and full-day on Sunday and 
weekends for category B campuses is half-day on Thursday and full-day on 
Friday. A penalty cost of 16 is given whenever a student has to sit for a 
weekend exam. Wik is the proximity cost if exam i is scheduled in slot k.  

 
The total weekend cost is as follows:  
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Finally, our objective is to optimise the following: 
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   i.e. minimise the total proximity cost and the weekend cost. 



 

 

3. Tabu Search Based Hyper-heuristic 

A hyper-heuristic (Burke et al 2003) works at a higher level of abstraction than a 
meta-heuristic and does not require domain knowledge.  A hyper-heuristic only has 
access to non-domain specific information that it receives from the heuristics that it 
operates upon.  A hyper-heuristic can be implemented as a generic module that has a 
common interface to the various low-level heuristics and other domain specific 
knowledge (typically the evaluation function) of the problem being solved.  Initially, 
the hyper-heuristic needs to know the number of n heuristics provided by the low-
level heuristic module.  It will guide the search for good quality solutions by setting 
up its own strategy for calling and evaluating the performance of each heuristic 
known by their generic names H1, H2, …. Hn.  The hyper-heuristic does not need to 
know the name, purpose or implementation detail of each low-level heuristic.  It just 
needs to call a specific heuristic, Hi, and the heuristic may modify the solution state 
and return the result via an evaluation function.  The low-level-heuristic module can 
be viewed as a ‘black box’ that hides the implementation detail and only returns a 
new solution and a revised evaluation function. 

3.1 Hyper-heuristic module 

The hyper-heuristic module is the focus of this research, where we need to design and 
test strategies that can intelligently select the best heuristic that will help guide the 
search to either intensify or diversify the exploration of the search region. 

The general framework for our hyper-heuristic is as follows: 
 
Step 1.   Construct initial solution 
Step 2.   Do 
   Consider heuristics that are not tabu 
   Apply chosen heuristic and make the heuristic tabu 

Update solution 
  Until terminating condition 
 

The initial solution is produced using a constructive heuristic (largest degree or 
saturation degree (Carter and Laporte (1997))). Next, a randomisation (randomly 
move exams to other valid slots) is carried out in order to start different runs with 
different solutions. In Step 2 we explore the neighbourhood to search for a better 
solution or local optima (and possibly global optima).  The framework is similar to a 
local search except that in Step 2, we explore the neighbourhood by selecting which 
heuristic to use to update the current solution.  
 
The core part of the algorithm is Step 2, where we need to decide which heuristics 
should be considered and which heuristic should be applied. Each heuristic differs in 



how it decides to move, thus creating its own search space region (heuristic search 
space) in the solution search space.  In the search for good quality solutions, the 
hyper-heuristic exhibits a kind of reinforcement learning that will assist in an 
intelligent action at each decision point. At this point, the hyper-heuristic can actually 
choose intelligently when to intensify or diversify the search because we believe that 
by allowing the low-level heuristics to compete at each iteration and selecting the 
heuristic with the best performance will help to balance the diversification and 
intensification of the solution search space. Heuristics that have been applied become 
tabu so that in the next iteration we can explore the solution space of other low-level 
heuristics that may perform well but, perhaps, not as well as the previous heuristics 
that are now tabu. 
 
The hyper-heuristic monitors the behaviour of each low–level heuristic by storing 
information about their performance using an adaptive memory. Our hyper-heuristic 
uses a tabu list that is of a fixed length n, where n is the number of low-level 
heuristics.  Instead of storing moves, each tabu entry stores (non-domain) information 
about each heuristic i.e. heuristic number, recent change in evaluation function, CPU 
time taken to run the heuristic, and tabu status (or tabu duration, which is the term we 
use here). Tabu duration indicates how long a heuristic should remain tabu and, will 
therefore, not be applied in the current iteration. If the tabu duration is zero, the 
heuristic is said to be tabu inactive and can be applied to update the solution.  If the 
tabu duration is non-zero, the heuristic is said to be tabu active and may not be used to 
update the solution. The tabu duration is set for a heuristic whenever a tabu restriction 
is satisfied.  After each iteration, the tabu duration is decremented until it reaches zero 
and the heuristic is now tabu inactive. We do not use any aspiration criteria since a 
tabu active heuristic will have its tabu duration decremented in each iteration, and will 
eventually be tabu inactive.  If all heuristics are tabu active in any iteration, no 
heuristics will be evaluated and obviously none will be applied.  Therefore, a heuristic 
changes its status from tabu active to tabu inactive only when the tabu duration is 
zero.  In using a tabu list, we need to decide what tabu duration value works best for a 
given problem instance.  Our first implementation used a deterministic tabu duration 
where, in each run, we used a fixed range of tabu duration and compare the final best 
solution. In our previous paper, (Kendall and Mohd Hussin 2004) we showed 
empirically, using deterministic tabu duration, that, an effective tabu duration is 
dependent upon the conflict matrix density of a given examination timetabling 
problem instance. In general having a low tabu duration allows the exploration to 
move within the same heuristic search space and a high tabu duration allows 
exploration into other possible regions.  If a tabu duration is too high, we found that 
the quality of the solution deteriorates since good heuristics are made tabu for too 
long. If a tabu duration is too low (or equal to zero), we have limited ourselves to 
search within a small region in the solution space.  In this paper, we will consider 
both deterministic tabu duration and random dynamic tabu duration. Random 
dynamic tabu duration uses a tabu duration range (tmin and tmax), and at each decision 
point of making a heuristic tabu, a tabu duration value is selected at random from the 
given range.  
 



 

The next issue we have to address is the mechanism for updating a solution. In each 
iteration, we compare a solution from each heuristic and take the best solution. We 
use three different strategies for accepting the best solution as a new solution at each 
decision point.  First, is to accept the solution from the best performing heuristic. This 
best solution may not improve the current or previous best solution. Second, is to 
accept the best solution and if this solution improves the previous solution, the same 
heuristic will be applied until it cannot improve the solution anymore (steepest ascent 
hill climbing).  Third, is to accept the best solution only if the solution is less than a 
boundary penalty. The boundary penalty was first introduced by Dueck (1993) in his 
great deluge algorithm, and Burke et al (2004) also apply it to an examination 
timetabling problem.   
 
We have implemented and tested three different hyper-heuristics, which incorporate 
the various strategies mentioned above.  
− The simplest form, i.e., Simple Tabu Search Hyper-heuristic (TSHH-S), where we 

consider all tabu inactive heuristics and apply the heuristic that has the best 
improvement only.  The algorithm iterates for a fixed time or until there is no 
further improvement for a given number of heuristic calls.  

− The second hyper-heuristic is Tabu Search Hyper-heuristic with Hill Climbing 
(TSHH-HC), which adds to TSHH-S a successive call to the best performing 
heuristic until no further improvement is made.  

− The third hyper-heuristic is Tabu Search Hyper-heuristic with Great Deluge 
(TSHH-GD), which updates a solution within a certain boundary only.   

For each of these hyper-heuristics, we apply both deterministic tabu duration and 
random dynamic tabu duration. 

3.2 Low-level heuristics module 

Low-level heuristics are heuristics that allow movement through a solution space and 
that require domain knowledge and are problem dependent.  Each heuristic creates its 
own heuristic search space that is part of the solution search space. The idea is to 
build a collection of (possibly) simple moves or choices since we would like to 
provide a library of heuristics that can be selected intelligently by a hyper-heuristic 
tool.   
 
The heuristics change the current state of a problem into a new state by accepting a 
current solution and returning a new solution.  Each low-level heuristic can be 
considered as improvement heuristics that returns a move, a change in the penalty 
function and the amount of time taken to execute the heuristic. The best performing 
heuristic should cause a maximum decrease in penalty (the lowest value).  Each move 
from an individual heuristic may cause the search to probe into the current 
neighbourhood or to explore a different neighbourhood.  A change in the penalty 
value means changing the penalty value for each of the soft constraints that were 
violated (first order conflict, second order conflict, etc) or moving an exam into an 
unscheduled list (exam becomes unscheduled and violates hard constraints). 
 



We used the same low-level heuristics as in Kendall and Mohd Hussin (2004) i.e.:  
• Five graph colouring heuristics that select an exam from an unscheduled list and 

schedule it into the best available slot that maximises the reduction in penalty.  The 
heuristics are: largest enrolment, largest exam conflict, largest total student 
conflict, largest exam conflict already scheduled, and exam with least valid slots. 

• Five move heuristics that select an exam, either at random, with maximum penalty, 
with highest second order conflict or highest first order conflict. This exam is 
rescheduled into a new random slot or a new slot which maximises the reduction in 
either the total penalty, total first order conflict or second order conflict.  

• Two swap heuristics that select an exam, either at random, with maximum penalty 
or with minimum penalty. The two exams selected will swap slots subject to no 
hard constraint violations. 

• A heuristic that removes a randomly selected exam from examinations already 
scheduled. This is the only heuristic which will move the search into an infeasible 
region because any exam may be unscheduled.  We make sure that the search can 
move back into its feasible region by un-scheduling exams that have other valid 
slots to move to in the next iteration.  

 
All of the above low-level heuristics are either 1-opt (one move) or 2-opt (two moves) 
and there is also a mixture of some randomness and some deterministic selection of 
exams and slots.  We purposely use low-level heuristics that are simple moves rather 
than low-level heuristics with intelligence and complex moves because we want to 
make sure that the hyper-heuristic can recognise good moves and make an intelligent 
decision based on these simple moves.  Furthermore, we want to make the problem-
domain knowledge heuristics easy to implement and the hyper-heuristic more 
generalised.  

4. Experimental Results 

We have implemented and tested our tabu search based hyper-heuristic framework on 
a PC with an AMD Athlon 1 GHz processor, 128 Mb RAM and Windows 2000.  The 
program was coded in C++ using an object-oriented approach.  We defined and 
implemented the hyper-heuristic and heuristics as objects that have a common 
interface and can interact with each other. In our previous paper (Kendall and Mohd 
Hussin, 2004), we tested the simplest form of our hyper-heuristic module TSHH-B 
with deterministic tabu duration on Carter’s examination timetabling benchmark data. 
We compared the results (using proximity cost per student) and found that the method 
is able to find good solution on all datasets.  Our tabu search based hyper-heuristic 
method has also added a significant improvement to tabu search because our results 
are better in all cases compared to tabu search approach by Di Gaspero and Schaerf 
(2000).  Without changing the low-level heuristics, we tested two more hyper-
heuristics with two different objective functions and produced results with respect to 
minimising proximity cost and minimising both proximity and weekend cost 



 

4.1  Proximity Cost Evaluation Method  

We use our previous method and proximity cost evaluation function and run it on our 
new dataset.  We also run our new and improved method: Tabu Search Hyper-
heuristic with Hill Climbing (TSHH-HC) and Tabu Search Hyper-heuristic with Great 
Deluge (TSHH-GD) with Carter’s examination timetabling benchmark data and 
UiTM-03 dataset.  Here, we will discuss in how the algorithm performs when applied 
to UiTM-03 dataset and compare its behaviour with one other dataset i.e car-s-91 (one 
of the benchmark dataset). Car-s-91 (Carleton University, Ottawa) is one of the 
largest dataset with 682 exams to be scheduled in 35 slots, 16,925 students and 56,877 
student exams. 

 
 

 UiTM-03 Car-s-91 
Tabu 
Duration 

TSHH-B TSHH-HC TSHH-GD TSHH-B TSHH-HC TSHH-GD 

0 2.16 2.08 2.14 6.88 6.78 6.85 
1 1.55 1.55 1.44 6.83 6.88 7.01 
2 1.93 1.94 1.37 5.37 5.14 5.15 
3 3.95 3.84 1.35 6.31 6.04 4.93 
4 6.37 6.33 1.44 6.91 7.10 5.01 

Random 1.65 1.63 1.4 5.43 5.31 5.6 

Table 2: Comparison of results between UiTM-03 and Car-s-91 datasets 

 
 TSHH-B TSHH-HC TSHH-GD Manual GD SA 

UiTM-03 1.55 1.55 1.35 12.83 1.4 1.68 
Table 3: Compare results for UiTM dataset with other solution methods 

Referring to Table 2, the best published result for car-s-91 is 4.65 (Burke and Newall 
2003) using a combination of adaptive initialisation strategies and great deluge. Our 
best result for car-s-91 is 4.93 using tabu search based hyper-heuristic and great 
deluge with tabu duration equal to 3.  The first column shows the tabu duration i.e 
how long a heuristic is placed in the tabu list.  We tested with both deterministic tabu 
duration and random dynamic tabu duration.  Our method shows similar behaviour 
between both datasets, where, the best result is obtained using tabu search hyper-
heuristic and great deluge with tabu duration equals 3.  Table 3 compares our best 
result on the UiTM dataset with the existing manual solution, the great deluge 
algorithm and simulated annealing.   
 
Figure 1 and Figure 2 show the best proximity cost, with various tabu durations 
obtained for uitm-03 and car-s-91 datasets. In our tabu based hyper-heuristic strategy, 
we apply the concept of heuristics cooperating with each other rather than penalising 
a non-performing heuristic.  When the tabu duration is greater than zero, we apply a 
tabu restriction where a heuristic will be tabu active if its solution value has been 



accepted to update the current solution.  The heuristic will remain tabu active for a 
number of steps equal to tabu duration.  We make a heuristic tabu because we want to 
direct the search to other possible heuristic search spaces.  Eventually we may go 
back to a heuristic search space once it is no longer tabu active and can give the best 
solution amongst all tabu inactive heuristics.  Similar to the tabu search meta-
heuristic, we need to decide which tabu duration (or list size in tabu search) works 
best for a problem instance.  For UiTM dataset (Figure 1), as tabu duration increases, 
solution quality improves, and once it reaches its best tabu duration, solution quality 
begins to deteriorate as we increase the tabu duration further.  Car-s-91 (Figure 2) 
shows only a slight difference when tabu duration equals zero and tabu duration 
equals one for both hyper-heuristics that either incorporate hill climbing or great 
deluge. In that instance, solution quality is better when tabu duration is zero compared 
to when tabu duration is one and improves again after that.    
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Figure 1: UiTM-03  Figure 2: Car-s-91 
 

 
Figures 3 – 5 show the hyper-heuristic performance with different tabu durations. 
The graphs show how the hyper-heuristic explores the search space. Both TSHH-S 
and TSHH-HC show more dispersed points in the graph compared to TSHH-GD 
because the boundary penalty used in great deluge directs the search to a much better 
solution. The lower tabu duration does not show much movement in the search space 
and it might be trapped in local optima, and as we increase the tabu duration, it 
shows more movement and exploration of search space and therefore able to find a 
better solution. As the tabu duration increases it becomes more difficult to get better 
solutions since many heuristics stay tabu too long and the hyper-heuristic has no 
option but to take the best solution from the worst heuristics. TSHH-GD is better at 
not moving to a worse solution since it is also directed by the boundary penalty and 
thus will not make bad moves in such a way that it cannot get back to good solution 
space. Figure 6 shows a comparison of the TSHH-GD with Great Deluge Algorithm. 
We ran both algorithms for 4 hours and tracd the penalty evaluation at every 5,000 
iterations (steps).  The TSHH-GD converges faster in terms of steps but it actually 
takes longer because each iteration explore various heuristics solution space and may 
take 10 times longer compared to the Great Deluge Algorithm.    
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Figure 3: Simple Tabu Search Based Hyper-heuristic for UiTM dataset 
 

Figure 4: Tabu Search Based Hyper-heuristic with Hill Climbing for UiTM dataset 
 

Figure 5: Tabu Search Based Hyper-heuristic with Great Deluge for UiTM dataset 
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Figure 6: Comparing TSHH-GD and Great Deluge Algorithm performance 
 

4.2 Proximity and Weekend Cost Evaluation Method 

The UiTM dataset has an additional constraint, i.e., weekend cost that we want to 
minimise.  We combine the proximity cost and weekend cost in one objective 
function with the same weights for proximity cost and a weight of 16 for every 
student who has to sit for a weekend exam.  We do not need to do much modification 
to our hyper-heuristic except for a change in the evaluation function, with weights 
adjusted for weekend and unscheduled exam (new weight of 10,000).  In the previous 
implementation we refer to second order conflict as a conflict for a student having to 
sit for exams, 2 slots apart. In this implementation we refer to second order conflict as 
a conflict for a student who has to sit for a weekend exam. In general, we can further 
improve our low-level heuristics by generalising the number of conflicts and the type 
of conflicts we want to minimise.  In this way, we can use our general method to 
solve an examination timetabling problem with multiple objectives.  Petrovic and 
Bykov (2002) solve examination timetabling with multiple objectives by dynamically 
changing the weights of criterion during the search process.  Our method does this 
implicitly because the hyper-heuristic can choose between the low-level heuristic that 
minimise the first order conflict or the second order conflict. The only parameter that 
we need to adjust would be the most suitable weights associated with the conflicts. In 
the UiTM problem, we can also determine how important it is to minimise first order 
conflicts or second order conflicts by associating appropriate weights.  In our 
experiments, we tried using 32 and 16 as weekend weights and 5,000 and 10,000 as 
unscheduled weights. We report here the results for 16 as weekend weights and 
10,000 as unscheduled weight.  A 5,000 unscheduled weight is not suitable because 
the total number of students is too large and this will direct the search into an 
infeasible region since the remove exam will outperform other heuristics by un-
scheduling an exam.  

 



 

 UiTM-03 
Tabu 

Duration 
TSHH-B TSHH-HC TSHH-GD

0 10.10 9.29 12.12 
1 9.27 11.20 11.46 
2 9.87 9.70 10.04 
3 17.36 17.31 7.12 
4 16.42 17.16 7.92 

Random 9.51 9.65 8.04 

Table 4: UiTM-03 that minimised proximity and weekend cost 

Table 4 shows the same hyper-heuristic being applied but with a different objective 
function.  The results should be higher than in Table 2 since we are also taking into 
account the penalty for weekend exams. On average we could say that students may 
not have to sit for weekend exams or sit for an adjacent exam since our best solution 
(7.12) is less than the weight for a weekend exam or adjacent exams.  But, this is not 
true since we do need to look at the overall timetable and count the number of 
students who have to sit for adjacent exams or weekend exams. Our general method is 
also able to find feasible solutions to the timetabling problem even though in the 
search process it does un-schedule exams and re-schedule them back again.  This is 
achievable implicitly with the help of our low-level heuristics that specialise in 
scheduling unscheduled exams. 

5.  Conclusion  

Collecting data from a large university is a difficult task, but with the help of a 
distributed network and a frequent update of student information, we can facilitate the 
automated process of producing examination schedule that is feasible and may satisfy 
everybody involved. Our tabu search based hyper-heuristic has been shown to 
produce feasible and good quality solutions on other benchmark dataset (Kendall and 
Mohd Hussin 2004). We compare our results from UiTM dataset with existing 
manual solution and find that our solution is at least 80% better with respect to 
proximity cost.   

Currently, we are experimenting on an adaptive tabu strategies of selecting best tabu 
duration at each decision point, and applying other methods on the UiTM-03 dataset. 
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