87

Multithreaded incremental solving for local search
based metaheuristics with step chasing

Geoffrey De Smet - Tony Wauters

Received: date / Accepted: date

Abstract This work introduces a multithreaded solving methodology for lo-
cal search based metaheuristics. It runs a single local search that spreads move
evaluations across multiple threads. To preserve incremental score calculation
(delta evaluation) capabilities, which are essential for the performance of lo-
cal search methods, the child threads reproduce the step of the main thread
in a method we named step chasing. The proposed method is implemented
within OptaPlanner, a Java-based open source solver, and can thus be used
by anyone. The effectiveness of the method is demonstrated using three meta-
heuristics (Tabu Search, Simulated Annealing, Late Acceptance) on four dif-
ficult combinatorial optimization problems: the nurse rostering problem, the
vehicle routing problem, the curriculum course timetabling problem and the
cloud balancing problem. Extensive experiments are performed using up to
16 threads with a total of 5550 runs, with significant speedups realized when
more threads are available to the solver. All results are compared with a sin-
gle threaded implementation, as well as a multi-walk approach. The greatest
speedups take place with respect to the nurse rostering problem.

Keywords Parallel local search - Multithreading - Incremental solving -
Metaheuristics - Open source
1 Introduction

Metaheuristics - and more specifically local search - are frequently used to
solve difficult combinatorial optimization problems. In order to solve real-world

Geoffrey De Smet
Red Hat
E-mail: gds.geoffrey.de.smet@gmail.com

Tony Wauters
KU Leuven, Department of Computer Science, CODeS research group
E-mail: tony.wauters@kuleuven.be

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

88

Geoffrey De Smet, Tony Wauters

problems and find high quality solutions, the speed at which these algorithms
can calculate constraint and fitness scores is generally an important factor.
The ability to accommodate large-scale problems is also crucial. A frequently
applied technique for improving the scaling behaviour of local search is incre-
mental score calculation (also known as delta evaluation). While this technique
brings an important scaling factor, parallelization on multi-core machines and
multi-node clouds enables further scaling. An opportunity which typically has
been overlooked in the academic literature. Perhaps because combining paral-
lelization and incremental score calculation poses some significant challenges.

Nevertheless, several works proposed a parallel local search method. [12]
proposed multiple-walk and single walk parallel local search methods and ap-
plied it to the traveling salesman problem, the steiner tree problem and two
scheduling problems. An overview of parallel metaheuristic strategies can be
found in [5,1,11,6].

As highlighted by [2], most metaheuristic frameworks and libraries with
parallelization focus on evolutionary algorithms. Therefore, very few frame-
works support parallel local search or trajectory-based metaheuristics. More-
over, none of them support incremental score calculation.

This study introduces a parallel local search strategy with incremental
score calculation, which is implemented in the open source constraint solver
OptaPlanner [7]. We show that our parallelization strategy is effective for
many local search algorithms (Hill Climbing, Tabu Search, Late Acceptance
Hill Climbing, Simulated Annealing). Furthermore, we present benchmarks
on four use cases (vehicle routing problem, nurse rostering problem, course
scheduling and cloud balancing) resulting in a total of 37 datasets and 5550
benchmark runs.

The remainder of the paper is structured as follows. In Section 2 we dis-
cuss the primary implementation requirements for this research. The actual
implemented method is discussed in Section 3. A thorough experimental inves-
tigation of the implemented method is provided in Section 4. Following this,
Section 5 ends this paper with conclusions and directions for future work.

2 Requirements

Before we move on to the design of the implemented method, we must explore
three important requirements which must be fulfilled in our implementation.
These requirements are:

1. Incremental score calculation
2. Reproducible runs
3. Parallel computation

We will illustrate these requirements using the Nurse Rostering Problem
(NRP) [4] as an example, an NP-hard problem which assigns shifts to nurses.
Each shift must be assigned to exactly one nurse. Hard constraints typically
include nurse conflicts, skill requirements and minimal rest periods. Soft con-
straints may include day off requests and illness affinity.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

89

Title Suppressed Due to Excessive Length

2.1 Incremental score calculation

A local search algorithm evaluates the neighborhood of proposed solutions at
every iteration. It determines the quality of each proposed solution by calcu-
lating its score. In simple cases, a score is formed from two weighted numbers:
one for the hard constraints (the feasibility check) and another for the soft con-
straints (the fitness function). Calculating these numbers is computationally
expensive. For example, in the Nurse Rostering Problem, it requires detecting
the number of nurse conflicts, and therefore every shift assignment must be
compared with every other overlapping shift assignment to check if they are
assigned to the same nurse. Given s shift assignments, this part of the score
calculation requires O(s?) checks, and therefore scales quadratically. Some of
the other hard or soft constraints are even more computationally expensive.

The local search algorithm triggers a score calculation for each move in its
neighborhood until an acceptance criterion is met - at which point it applies the
winning move and begins a new step to evaluate a new neighborhood. In the
NRP, a simple change move assigns one shift to a different nurse. To calculate
the score of the solution after applying such a move, we could calculate the
score from scratch by iterating over all assignments. However, this is highly
inefficient. Instead, we calculate it incrementally by determining the delta
between the old and new score. For example in the NRP, the incremental
score calculation of a move, that assigns one shift to a different nurse, need
only compare that one shift assignment with every other overlapping shift
assignment to determine the delta. This part of the score calculation now
requires only O(s) checks, instead of O(s?). This is an order of magnitude
faster than non-incremental score calculation methods.

To achieve multithreaded solving, we cannot afford to forfeit incremental
score calculation given that, in practice, the negative effects of being unable
to calculate scores incrementally far outweigh any gain of parallel computa-
tion. For example, given a NRP with 5000 shift assignments and 250 nurses,
incremental calculation of the nurse conflict constraint is up to 5000 times
faster than non-incrementally. To make up for such a loss, a perfectly paral-
lelized algorithm would require at least 5000 CPU’s. From both a practical
and economic perspective, this is clearly not an option.

Our implementation must therefore combine both incremental score calcu-
lation and multithreaded solving.

2.2 Reproducible runs

A constraint solver is reproducible if and only if running it twice yields the
exact same solution (with the exact same score), given the exact same allocated
CPU time (in the same manner). For local search and construction heuristic
algorithms, this boils down to yielding the exact same solution at every step.
A step is the outer iteration in these algorithms: each time they pick a winning
move, it is a new step. Note that due to a difference of allocated CPU time,

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

90

Geoffrey De Smet, Tony Wauters

the timing of each step between runs can vary and - given the same amount
of time - a reproducible run still might not reach the same number of steps.

Most local search algorithms use a Pseudo Random Number Generator
(PRNG), which influences reproducibility. For example, a PRNG breaks score
ties in Tabu Search and influences move acceptance in Simulated Annealing. A
single-threaded run can easily be made reproducible by using a single, seeded
PRNG for all decisions. However, if a multi-threaded run uses a single PRNG
across multiple threads, the concurrent calls on that PRNG suffer from conges-
tion. Furthermore, we must somehow guarantee that all calls on that PRNG
are always executed in the same order, given that re-ordering affects the step
decision, causing the entire local search algorithm to go down a different path.
As such, an efficient and reproducible multi-threaded run cannot use the same
PRNG across multiple threads.

In practice, reproducibility is critical for any production solver: it allows
programmers to debug their code during development as well as reproduce
production issues on their own machines. Furthermore, in highly regulated
enterprise environments, such as financial institutions, it enables the auditing
of historic solver runs.

Our implementation of multithreaded solving must therefore not sacrifice
reproducibility.

2.3 Parallel computation

Let us examine which parts of local search are suitable for parallelization. In
order to improve performance over a single threaded solver, a multithreaded
solver must parallelize at least parts of the algorithm. Given ¢ threads and the
same number of CPU cores, the performance of those algorithm parts increases
by a factor of ¢, minus any overhead the multithreaded solving incurs.

Looking at the anatomy of a single threaded local search (Figure 1), there
are several candidates to compute in parallel:

1. Select move: From the neighborhood, generate one move at a time, just in
time. We could give each child thread a copy of the move selector (which
generates the neighborhood on the fly). If we give each move selector its own
PRNG (which is seeded by a common PRNG), they would consequently
generate the same moves, thereby preserving reproducibility. However, we
would need to force all child threads to generate and evaluate the exact
same number of moves, meaning that the faster move selectors would have
to wait for the slower ones. With a mix of fine and coarse grained moves,
or varying CPU power per core (often the case in public clouds), the per-
formance cost for enforcing an equal distribution of moves per child thread
is unacceptable. Furthermore, move selection itself is usually inexpensive
and thus we chose not to parallelize it in this work.

2. Calculate move score: Evaluating hard and soft constraints is computation-
ally expensive given that all constraints must be evaluted. Even with in-
cremental score calculation, evaluating the NRP’s nurse conflict constraint

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

91

Title Suppressed Due to Excessive Length

Single threaded Local Search

. a Select move CPU inexpensive
'L from neighbors Parallelization prohibits reproducibility

-

Calculate move score
Evaluate constraints
and fitness function

v

Accept move
Differs per Local Search
(HC, TS, SA, LAHC, ..)

CPU expensive
Ideal for parallelization

CPU inexpensive
Parallelization often prohibits reproducibility

Accepted?
[No]

[Yes]

Do move as step
Remember best solution

Terminate?
[No] [Yes] @

Fig. 1 Anatomy of a single threaded Local search

is still in O(s) - which is still expensive because its nested in the move
evaluation iteration, which is in turn nested in the step iteration. Yet each
move can be scored in isolation from the others in the same step, so this
is an ideal candidate for parallelization.

3. Accept move: In Hill Climbing, the acceptor simply checks if the score
of a move improves upon the best score. Such an implementation can be
easily parallelized. But in Simulated Annealing, the acceptance criterion
uses the PRNG. Because we do not wish to enforce in advance which child
thread evaluates which move (because, as explained earlier, this impairs
efficiency), the acceptor must always use the same PRNG in the same
order to guarantee reproducibility. Also, given that move acceptance itself
is usually inexpensive, we choose not to parallelize it.

Our approach must therefore at least parallelize the score calculation of
each move.

3 Method

We explain our method on local search in a general manner given that it
works with respect to any local search algorithm (including Tabu Search [§],
Simulated Annealing [10] and Late Acceptance Hill Climbing [3]), as shown
by the implementation and benchmarks later in this paper.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

92

Geoffrey De Smet, Tony Wauters

The basic principle is parallelizing the score calculation by offloading it
from the main solver thread (the parent thread) to n child threads, as shown
in Figure 2.

Multithreaded Local Search

2 Parent thread Child thread 1 Child thread 2
] Select b moves | - t t

FEEEEES PO [Y
| W o
. . [Calculate move score Calculate move score]
Select 1 move | - T : F
(Fetch move calculation ¥
¢ Oipesation Operation
Accept move caleulation *ulqu-:ac'r' N
[miowe] [1
Accepted? Q[pc—son]é - L | e -
[Na] Istep] tep
[¥es]
Do move asstep ~ - 77777 T yTTTTTTFITTTTTTT v
Remember bast solution R 4 ; et W |
[Do move as step Do move as step J
Terminate?
[Ma) [Wes] =

L

Fig. 2 Multithreaded local search

This redistribution has two noteworthy consequences:

— To evaluate multiple moves in parallel, multiple moves are active simulta-
neously.

— To preserve incremental score calculation, each child thread must have an
isolated score calculation state that must be kept in sync with the steps
on the parent thread.

3.1 Select multiple moves

One implication of calculating the score of two (or more) moves in parallel
is that the second move must be generated before the calculation of the first
move’s score has finished. As explained earlier, we have chosen to generate
all moves in the parent thread. Furthermore, the winning move of a step is
also picked in the parent thread. So, given n child threads, we must at least
generate n moves in the parent thread, before processing the resulting score of
the first move in the same thread, to prevent the child threads from starving.
All these generated moves for which the score has not been processed yet are
considered active. For reproducibility, the number of active moves must be

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

93

Title Suppressed Due to Excessive Length

deterministic. Generating a different number of moves, offsets the PRNG used
in move selectors, causing non-reproducible runs. Furthermore, we must have
more than n active moves given that a child thread can calculate multiple
fine-grained moves while the parent thread is awaiting the result of a coarse-
grained move from another child thread. Therefore we have b active moves,
for which b is a multiple of n. There is a trade-off affecting the value of b: it
must be large enough to satisfy the hunger of the child threads for maximum
performance (especially with a mix of fine-grained and coarse-grained moves),
but if b is too large then the generating of b moves at the beginning of each
step iteration could negatively affect performance and memory usage. From
our experiments, we found that setting b to 10 times n is a good default setting,
where n is the number of child threads.

In the parent thread, we begin every step by selecting b moves from the
neighborhoods, before receiving the first evaluated move from a child thread.
Then, every time a move is received, we select a new one such there are always
b active moves.

3.2 Move evaluation

The parent thread communicates with the child threads through an opera-
tion queue to send information and a result queue to receive information. The
parent thread puts each selected move in the operation queue as a move calcu-
lation operation. The child threads continuously pulls these moves from that
operation queue. When they do so, they calculate the score incrementally for
that move and put the result in the result queue. The auxiliary data structures
for such incremental score calculation are maintained by each child thread in-
dividually. Meanwhile, once the parent thread has generated b moves, it pulls
the first move calculation result from the result queue. If that queue is empty,
it waits until one of the child threads adds a result. After receiving a move,
the parent thread accepts or rejects that move. Then it checks if an accepted
move has won the step iteration. If at this point in time there is no winning
step, it selects a new move.

This orchestration, shown in Figure 3, ensures that all child threads are
kept busy evaluating moves, regardless of any variance concerning move eval-
uation duration.

Due to differences in move granularity, the score calculation results of each
move come back out of order. For example, the result of the 4th generated
move may arrive before the result of the 3rd generated move, especially if
the 3rd move is more coarsely grained. For reproducibility, the parent thread
orders the results back into their original order, on the fly. In this example, if
the parent thread needs to process the 3rd move, but the 4th and 5th arrive
first, it places those moves in a backlog and waits until the 3rd move arrives.
Later, to return the 4th or 5th move, it first searches in the non-empty backlog
before pulling a move from the result queue.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

94

Geoffrey De Smet, Tony Wauters

<h=6 > : Cn=2>
= Maoves in play example =
Parent thread — — Child thread 1 Child thread 2
i operation queus result queue
[Generate move 1] 1)
[Generate move 2 211
| Generate move 3 |- 3 Hx
[Generate move 4]| 413
[Generate move 5 | 51413 Calculate I
[Genarate move § |~ > g [5[413 move 1 Calculate
: . - — . } move 2
[Acceptineject move 1] | [G6I5[4TH] bf] ®
[Generate move 7] x| TlEls1E) b —
Acceptireject mave 2 .
Generate move 8|~ 671615 Calculate
; Calculate move 4
— : &) move 3 e
—
— : < | mowe s
! L - . <—[a]5]: o
[Accoptireject move 3 | B (4T5T5 .
Generate move 8| 5[als) . @) Calculate
Acceptirgjact move 4 ' Calculate move 6
| Generate move 10] | iofaja)l . — mowve 7

Fig. 3 Lifetime of active moves

The parent thread then accepts or rejects the retrieved move, depending on
the acceptance criteria. If enough moves are accepted, it appoints the winning
move of the current step. Both these decisions depend on the Local Search
type and greatly affect the number of selected moves per step. For example,
Tabu Search typically samples many non-tabu moves, which results in a slow
stepping run. Simulated Annealing and Late Acceptance on the other hand,
appoint the first accepted move, resulting in a fast stepping run - especially
in the beginning.

If there is no winning move, the parent thread selects a new move and puts
it in the operation queue to ensure there are always exactly b active moves,
before repeating the process.

3.3 Step chasing

If there is a winning move, the local search advances: that move is applied
on the working solution of the parent thread and the step ends. Before doing
so, it clears the operation queue (which removes most of the b active moves
except for about n active moves that already reached a child thread) and puts
n step operations for that winning move in the operations queue, to sync the
child threads. When a child thread pulls such a step operation it applies the
winning move to keep their solution state in sync with the parent thread’s
state in an incremental manner (without cloning the entire solution state).
After processing the step operation, the child thread also waits until all other

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

95

Title Suppressed Due to Excessive Length

child threads have also pulled and processed their step operation. This is to
prevent one child thread pulling two step operations of the same step from the
operations queue, which would cause another child thread to not get any and
go out of sync.

After applying the accepted move as a step, the parent thread also up-
dates the best known solution if the new solution’s score is better. Unless the
termination criterion is reached, the process restarts and the parent thread
generates b active moves. Then the parent thread continues as before: every
time it receives an evaluated move, it generates a new active move. As for the
old active moves that reached a child thread before the operations queue got
cleared, they eventually end up in the result queue too and they are completely
ignored when they finally arrive to the parent thread in the new step (based
on their outdated step ID).

This orchestration, shown in Figure 4, ensures that every child thread
has its own copy of an equivalent working solution, eventually in sync with
the parent thread, to incrementally evaluates each move in isolation. They
calculate the same score as the parent thread would, regardless of when and
which child thread ends up evaluating a specific move.

Ch=6 > ; ; Ch=e o
— Step synchronization example =
Parent thread — — Child thread 1 Child thread 2

i operation queus result gueue

[S[—.‘!up B KX Srone -
Genarate move 1 | - -4 1 solution

((5 0|L1|§m

| Generate move 2| - 211 S0

[Generate move 3]| Y A - . -

[Genarate move 4 | 413 |Calr:|. ale Calc.JIatel

mave 1 move 2
Calculate
[Accept mave 71 S CECCE A mavs 71 C]J‘v:";t:
[Do step &)| Alrerdre Calculate '
] | ALA) | mave 73

| Generate move 1 | 1) — : Do

[Generate move 2_) | K Do step A

[Generate move 3| —]| 211 stepA | er

[Genarate move 4 | — #|. aze-—- reeemEmee e

| Generate move 5 | 5l4]3 - Caloulats Calculate

[Generale move 6 I 151413) o e .| move I_;O';;?

[Reject move 1 ([6]ala]=) >) . i

[Generate move 7| | 16[5]8) . 15 Caleulale

[Accept move 2 [71615 ' } Calculate

mava 3
[Terminats] x| FTIBIR € — . miowe 4
; =) i) Terminata Terminate
| A ES

Fig. 4 Step synchronization procedure

If the termination criterion is reached, the parent thread clears the opera-
tion queue and puts n poison pill operations on the operation queue. When a
child thread pulls such a poison pill, it terminates itself. Meanwhile the parent
thread also terminates, returning the best solution encountered.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

96

Geoffrey De Smet, Tony Wauters

4 Experimental results

In order to evaluate the implemented parallelization method we ran a signifi-
cant number of benchmarks on a range of optimization problems. The follow-
ing problems, all of which are available as examples within OptaPlanner!, are

considered:

— Nurse rostering problem

— Vehicle routing problem

— Curriculum course timetabling problem
— Cloud balancing problem

All experiments? are performed on a dual Intel(R) Xeon(R) CPU E5-2660
v3 platform with 20 cores. Hyper Threading was disabled. A maximum heap
size of 4GB RAM was allowed for the Java Virtual Machine (JDK 8), which
was revealed to be sufficient for all experiments. OptaPlanner version 7.13.0.Fi-
nal was used. Each algorithm configuration was run 10 times on each set of
problem instances with different random seeds. As a termination condition, a
fixed time of 300 seconds was used for all runs.

In the next sections we will first present the summarized results for each
test case. Following this, Section 4.5 will provide a more thorough discussion
of the results.

4.1 Nurse rostering problem results

In the nurse rostering problem, as defined by the first International Nurse Ros-
tering Competition 2010 [9], shifts must be assigned to nurses while taking into
account various constraints such as skill requirements, employee availability
and unwanted shift patterns. We tested on the competition’s medium, medium-
late and medium-hidden® instances. Figure 5 shows the average speedups over
all instances for Late Acceptance, Simulated Annealing and Tabu Search. For
each algorithm the default version without multithreading is compared against
a multithreaded version with step chasing using 2, 4, 8 and 16 threads. It is
clear from the figure that the multithreaded solver offers good speedups com-
pared to the default version, with increasing speedups up to 16 threads. The
most significant speedups are reached by Tabu Search (which is up to 9.32
times faster when using 16 threads).

In addition to the realized speedups we also want to study the effect of
parallelization on the quality of the solutions. Table 1 shows the comparison
of solution quality (score) between a Single walk (1 thread), a multi-walk?® (8

1 OptaPlanner code and documentation available at: https://www.optaplanner.org

2 A note on how to reproduce these results can be found at: https://www.optaplanner.
org/code/benchmarks.html

3 https://www.kuleuven-kulak.be/nrpcompetition/instances-results

4 Since a real multi-walk is not implemented in OptaPlanner, the multi-walk results are
defined by taking the best out of 8 independent walks.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

97

Title Suppressed Due to Excessive Length

independent walks/threads) and the multithreaded solver with step chasing (8
threads) on the nurse rostering problem. Scores are averaged over 10 runs. The
columns A single and A multi-walk indicate the solution quality difference
between the step chasing and the single, and between the step chasing and
the multi-walk, respectively. The average results indicate that, when given 8
threads, multithreading with step chasing outperforms a single walk, and for
Late Acceptance and Tabu Search also outperforms a multi-walk strategy.

Nurse rostering - effect of multithreaded incremental solving
10.00

6.31 6.36
5.20
4.98
4.39
4.00
3.51
3.09
3.00 2.76
2.00 1.81
157 7

100 1.00 1.00

) III

0.00

Average speedup
o
2
8

Default 2 threads 4 threads 8 threads 16 threads

Late Acceptance ™ Simulated Annealing ™ Tabu Search

Fig. 5 Average speedups on the nurse rostering problem for Late Acceptance, Simulated
Annealing and Tabu Search.

4.2 Vehicle routing problem results

In the vehicle routing problem, we tested on a set of instances from the
vrp-rep benchmark website °: belgium-road-time-n50-k10, belgium-road-time-
n100-k10, belgium-road-time-n500-k20, belgium-road-time-n1000-k20, belgium-
road-time-n2750-k55.vrp. These include capacity constraints and realistic asym-
metric distances calculated from OpenStreetMap. Figure 6 illustrates the aver-
age speedups over all instances for Late Acceptance, Simulated Annealing and
Tabu Search on this problem. For each algorithm the default version without
multithreading is again compared against a multithreaded version using 2, 4,

5 http://www.vrp-rep.org/datasets.html

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

Geoffrey De Smet, Tony Wauters

Alg. Dataset Single Multi-walk 8T Step chasing 8T A single A multi-walk
LA medium01 346,3 334,0 334,9 3,29% 20,27%
LA medium02 347,1 333,0 334,4 3,66% -0,42%
LA mediumo03 334,8 328,0 326,0 2,63% 0,61%
LA medium04 348,9 337,0 337,4 3,30% -0,12%
LA medium05 386,1 383,0 382,1 1,04% 0,23%
LA medium_hint01 152,3 120,0 121,7 20,09% -1,42%
LA medium_hint02 268,9 190,0 160,0 40,50% 15,79%
LA medium_hint03 314,7 187,0 190,6 39,43% -1,93%
LA medium_late01 330,6 242,0 247,2 25,23% -2,15%
LA medium_late02 102,2 99,0 96,1 5,97% 2,93%
LA medium-late03 113,2 84,0 85,1 24,82% -1,31%
LA medium_late04 113,7 106,0 105,5 7,21% 0,47%
LA medium_late05 365,8 221,0 225,6 38,33% -2,08%
Late Acceptance average 16,58% 0,80%
SA medium01 254,7 251,0 248,4 2,47% 1,04%
SA medium02 253,7 248,0 248,4 2,09% -0,16%
SA mediumo03 250,6 244,0 244,3 2,51% -0,12%
SA medium04 251,6 246,0 245,0 2,62% 0,41%
SA medium05 316,2 312,0 311,1 1,61% 0,29%
SA medium_hint01 52,2 43,0 43,2 17,24% -0,47%
SA medium_hint02 103,6 95,0 97,1 6,27% -2,21%
SA medium_hint03 167,6 142,0 148,6 11,34% -4,65%
SA medium_late01 181,5 178,0 176,3 2,87% 0,96%
SA medium_late02 36,1 25,0 27,5 23,82% -10,00%
SA medium-late03 41,7 35,0 36,7 11,99% -4,86%
SA medium_late04 47,4 42,0 40,8 13,92% 2,86%
SA medium_late05 166,9 153,0 152,5 8,63% 0,33%
Simulated Annealing average 8,26% -1,28%
TS medium01 255,3 252,0 248,2 2,78% 1,51%
TS medium02 252,1 248,0 245,7 2,54% 0,93%
TS mediumo03 248,3 244,0 243,2 2,05% 0,33%
TS medium04 253,1 248,0 246,8 2,49% 0,48%
TS medium05 324,9 320,0 315,3 2,95% 1,47%
TS medium_hint01 60,2 55,0 53,1 11,79% 3,45%
TS medium_hint02 147,0 130,0 138,4 5,85% -6,46%
TS medium_hint03 203,1 189,0 185,0 8,91% 2,12%
TS medium_late01 223,9 208,0 210,0 6,21% -0,96%
TS medium_late02 45,9 42,0 37,1 19,17% 11,67%
TS medium-late03 51,2 49,0 45,1 11,91% 7,96%
TS medium-late04 50,7 45,0 45,0 11,24% 0,00%
TS medium-late05 218,8 198,0 200,1 8,55% -1,06%
Tabu Search average 7,42% 1,65%

98

Table 1 Score comparison on the nurse rostering problem for single-walk, multi-walk (8
threads), and step chasing (8 threads). Lower scores indicate better solutions.

8 and 16 threads. The best results are obtained when using 4 threads. More
significant speedups are obtained for larger instances, while the multithreaded
version offers no benefit for the two smallest instances .

Table 2 shows the comparison of solution quality (score) between a Single
walk (1 thread), a multi-walk (8 independent walks/threads) and the multi-
threaded solver with step chasing (8 threads) on the vehicle routing problem.
Scores are averaged over 10 runs. The columns A single and A multi-walk
indicate the solution quality difference between the step chasing and the single,
and between the step chasing and the multi-walk, respectively. Given the low
speedup values on this problem when 8 threads are available, no significant
benefit can be seen from the results. In fact, a multi-walk strategy performance
better in most cases.

4.3 Curriculum course timetabling results
We also tested on the curriculum course timetabling problem. Lectures have to

be assigned to rooms and periods, under constraints such as teacher conflicts,
room capacity and curriculum compactness. Instances from the international

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

99

Title Suppressed Due to Excessive Length

Vehicle routing- effect of | solving
2.50
211 23 5y

2.00

1.50 148
k3
1 132

130

2 1.28 129 o
&
&
£
o
>
< 100 1.00 1.00

1.00

076 075
070
D'sa I I I
0.00
Default 2 threads 4 threads 8 threads 16 threads

u Late Acceptance = Simulated Annealing Tabu Search

Fig. 6 Average speedups on the vehicle routing problem for Late Acceptance, Simulated
Annealing and Tabu Search.

Alg. Dataset Single Multi-walk 8T Step chasing 8T A single A multi-walk
LA belgium-road-time-n50-k10 114687,9 114320,2 114544,0 0,13% -0,20%
LA belgium-road-time-n100-k10 141631,7 140883,1 141667,2 -0,03% -0,56%
LA belgium-road-time-n500-k20 360078,3 356830,5 358769,3 0,36% -0,54%
LA belgium-road-time-n1000-k20 556317,0 555025,2 541285,1 2,70% 2,48%
LA belgium-road-time-n2750-k55 1195007,5 1194608,9 1190600,6 0,37% 0,34%
Late Acceptance average 0,71% 0,30%
SA belgium-road-time-n50-k10 117740,9 116871,7 117757,9 -0,01% -0,76%
SA belgium-road-time-n100-k10 152050,8 145775,7 152893,6 -0,55% -4,88%
SA belgium-road-time-n500-k20 374649,3 372377,2 375574,1 -0,25% -0,86%
SA belgium-road-time-n1000-k20 522698,7 512684,7 524798,4 -0,40% -2,36%
SA belgium-road-time-n2750-k55 1127755,5 1118702,3 1114100,7 1,21% 0,41%
Simulated Annealing average 0,00% -1,69%
TS belgium-road-time-n50-k10 118009,2 116340,7 117592,1 0,35% °1,08%
TS belgium-road-time-n100-k10 148411,5 144667,8 148509,0 -0,07% -2,66%
TS belgium-road-time-n500-k20 362010,5 353631,9 362017,5 0,00% -2,37%
TS belgium-road-time-n1000-k20 525642,8 521534,0 522372,1 0,62% -0,16%
TS belgium-road-time-n2750-k55 1200391,1 1200391,1 1200391,1 0,00% 0,00%
Tabu Search average 0,18% -1,25%

Table 2 Score comparison on the vehicle routing problem for single-walk, multi-walk (8
threads), and step chasing (8 threads). Lower scores indicate better solutions.

Timetabling Competition 2007 Track 3 http://www.cs.qub.ac.uk/itc2007/
are used.

Figure 7 shows the average speedups over all instances for Late Acceptance,
Simulated Annealing and Tabu Search on this problem. For each algorithm
the default version without multithreading is compared to a multithreaded
version using 2, 4, 8 and 16 threads. The figure shows how good speedups
are achieved when using 4 or more threads. However, no significant gains are
realized when using more than 4 threads. Once again, Tabu Search benefits
most from multithreaded incremental solving.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

100

Geoffrey De Smet, Tony Wauters

Table 3 shows the comparison of solution quality (score) between a Sin-
gle walk (1 thread), a multi-walk (8 independent walks/threads) and the
multithreaded solver with step chasing (8 threads) on the curriculum course
timetabling problem. Scores are averaged over 10 runs. The columns A single
and A multi-walk indicate the solution quality difference between the step
chasing and the single, and between the step chasing and the multi-walk, re-
spectively. It should be noted, that for this problem not all runs returned a
feasible solution. Therefore, infeasible solutions are penalized with a penalty
value of 100, 000 for each hard constraint violation. On this problem, the multi-
walk strategy is capable of finding more feasible solutions. However, when both
strategies are able to find feasible solutions, the step chasing shows better re-
sults when Late Acceptance or Simulated Annealing is used.

Curriculum course timetabling - effect of multithreaded incremental solving

298 297

318
3.08
293 298
2.84
2.72
2.59
2.50
179 197 180

100 1.00 1.00
1.00
) III
0.00

Default 2 threads 4 threads 8 threads 16 threads

Average speedup
N
8
H

-
n
3

W Late Acceptance M Simulated Annealing M Tabu Search

Fig. 7 Average speedups on the curriculum course timetabling problem for Late Accep-
tance, Simulated Annealing and Tabu Search.

4.4 Cloud balancing results

We have also tested the incremental solver on the cloud balancing problem.
This problem concerns the assignment of computer processes to machines sub-
ject to CPU, RAM and network bandwidth constraints with the aim of reduc-
ing operating costs. The instances considered are 100computers-300processes,
200computers-600processes, 400computers-1200processes, 800computers-2400processes

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

Title Suppressed Due to Excessive Length

Alg. Dataset Single Multi-walk 8T Step chasing 8T A single A multi-walk
LA compO1 10,7 10,0 6,1 42,99% 39,00%
LA comp02 214,5 191,0 199,9 6,81% -4,66%
LA comp03 209,5 191,0 188,7 9,93% 1,20%
LA comp04 127,2 111,0 104,3 18,00% 6,04%
LA compO05 250626,3 583,0 250654,5 -0,01% -42893,91%
LA compO06 244,3 222,0 181,2 25,83% 18,38%
LA compQ7 269,3 251,0 186,2 30,86% 25,82%
LA comp08 147,7 130,0 120,5 18,42% 7,31%
LA comp09 224,0 208,0 211,0 5,80% -1,44%
LA complO 200,7 185,0 156,4 22,07% 15,46%
LA compll 1,1 0,0 0,0 100,00% 0,00%
LA compl2 10533,3 499,0 534,8 94,92% -7,17%
LA compl3 163,7 154,0 147,0 10,20% 4,55%
LA compl4 158,7 152,0 136,0 14,30% 10,53%
Late Acceptance average 28,58% ~3055,64%
SA compO1 8,2 7,0 5,8 29,27% 17,14%
SA comp02 40210,2 192,0 70184,3 -74,54% -36454,32%
SA comp03 205,5 178,0 197,3 3,99% -10,84%
SA comp04 99,9 92,0 79,2 20,72% 13,91%
SA comp05 680749,7 600676,0 730764,1 -7,35% -21,66%
SA comp06 60183,0 167,0 30152,1 49,90% -17955,15%
SA compO07 184,2 167,0 125,7 31,76% 24,73%
SA comp08 118,4 103,0 85,7 27,62% 16,80%
SA comp09 187,2 174,0 176,0 5,98% -1,15%
SA complO 147,0 135,0 113,7 22,65% 15,78%
SA compll 0,8 0,0 0,0 100,00% 0,00%
SA compl2 30569,5 543,0 70568,6 -130,85% -12896,06%
SA compl3 126,6 120,0 106,4 15,96% 11,33%
SA compl4 140,1 123,0 116,4 16,92% 5,37%
Simulated Annealing average 8,00% -4802,44%
TS compO1 7,8 6,0 5,8 25,64% 3,33%
TS comp02 150242,3 233,0 160217,0 -6,64% -68662,66%
TS comp03 259,5 239,0 230,6 11,14% 3,561%
TS comp04 129,3 105,0 114,0 11,83% -8,57%
TS comp05 730741,0 600693,0 790767,8 -8,21% -31,64%
TS comp06 120217,8 220,0 90185,4 24,98% -40893,36%
TS compO07 220,2 200,0 173,7 21,12% 13,15%
TS comp08 149,9 137,0 135,8 9,41% 0,88%
TS compO09 230,2 218,0 221,0 4,00% -1,38%
TS complO 179,8 160,0 145,1 19,30% 9,31%
TS compll 10,2 1,0 1,9 81,37% -90,00%
TS compl2 120595,5 100564,0 100587,1 16,59% -0,02%
TS compl3 157,1 125,0 143,4 8,72% -14,72%
TS compl4 177,5 143,0 154,9 12,73% -8,32%
Tabu Search average 16,57% -7834,32%

101

Table 3 Score comparison on the curriculum course timetabling problem for single-walk,
multi-walk (8 threads), and step chasing (8 threads). Lower scores indicate better solutions.
Infeasible solutions are penalized with a penalty value of 100,000 for each hard constraint
violation

and 1600computers-4800processes from optaplanner-examples. Figure 8 illus-
trates the average speedups over all instances when Late Acceptance, Simu-
lated Annealing and Tabu Search are applied to this problem. For each al-
gorithm the default version without multithreading is compared against a
multithreaded version using 2, 4, 8 and 16 threads. The figure shows that
the multithreaded incremental solver runs faster than the default version on
this problem. The largest speedups are realized for the Tabu Search with 8
threads. However, further increasing the number of threads to 16 appears to
have a negative impact on the speedup for Tabu Search.

Table 3 shows the comparison of solution quality (score) between a Single
walk (1 thread), a multi-walk (8 independent walks/threads) and the multi-
threaded solver with step chasing (8 threads) on the cloud balancing problem.
Scores are averaged over 10 runs. The columns A single and A multi-walk
indicate the solution quality difference between the step chasing and the sin-
gle, and between the step chasing and the multi-walk, respectively. Although a
small benefit over a single walk can be observed, the step chasing speedups do

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

102

Geoffrey De Smet, Tony Wauters

Alg. Dataset Single Multi-walk 8T Step chasing 8T A single A multi-walk
LA T00computers-300processes 111036,0 110650,0 110715,0 0,29% -0,06%
LA 200computers-600processes 193061,0 191490,0 192793,0 0,14% -0,68%
LA 400computers-1200processes 432172,0 429110,0 432230,0 -0,01% -0,73%
LA 800computers-2400processes 890808,0 886520,0 889665,0 0,13% -0,35%
LA 1600computers-4800processes 1788136,0 1783800,0 1784911,0 0,18% -0,06%
Late Acceptance average 0,14% -0,38%
SA 100computers-300processes 110335,0 109950,0 110142,0 0,17% -0,17%
SA 200computers-600processes 192335,0 191370,0 192183,0 0,08% -0,42%
SA 400computers-1200processes 429866,0 428300,0 430913,0 -0,24% -0,61%
SA 800computers-2400processes 886034,0 884510,0 884609,0 0,16% -0,01%
SA 1600computers-4800processes 1765000,0 1763950,0 1759957,0 0,29% 0,23%
Simulated Annealing average 0,09% -0,20%
TS 100computers-300processes 110099,0 109410,0 108723,0 1,25% 0,63%
TS 200computers-600processes 191490,0 190530,0 190148,0 0,70% 0,20%
TS 400computers-1200processes 432013,0 429360,0 428019,0 0,92% 0,31%
TS 800computers-2400processes 895670,0 891230,0 881928,0 1,53% 1,04%
TS 1600computers-4800processes 1803831,0 1801300,0 1761139,0 2,37% 2,23%
Tabu Search average 1,36% 0,88%

Table 4 Score comparison on the cloud balancing problem for single-walk, multi-walk (8
threads), and step chasing (8 threads). Lower scores indicate better solutions.

not translate into significantly better solutions on this problem when compared
to a multi-walk.

Cloud balancing- effect of multithreaded incremental solving
5.00

4.00

3.50

266
273 275
2.40 244
230 231
170 170
151
1.50
112 114
100 1.00 1.00
1.00
) III

0.00
Default 2 threads 4 threads 8 threads 16 threads

Average speedup
N w
4y 8

~
8

mLate Acceptance M Simulated Annealing ™ Tabu Search

Fig. 8 Average speedups on the cloud balancing problem for Late Acceptance, Simulated
Annealing and Tabu Search.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

103

Title Suppressed Due to Excessive Length

4.5 Results discussion

The results on the four tested benchmark problems show that the proposed
multithreaded implementation offers significant speedups in general. However,
the speedups depend upon the problem characteristics such as scale.

It can be seen that Tabu Search benefits more from the multithreaded
implementation than Simulated Annealing and Late Acceptance. This can be
attributed to the fact that Tabu Search typically evaluates more moves in each
step than the other algorithms. This means that it performs fewer steps and
therefore has less step chasing overhead.

When compared to a (non parallel) single-walk, the step chasing strategy
results in significantly better solutions. However, when compared to a multi-
walk strategy, which offers a more diverse search, step chasing does not always
results in better solutions. In particular, when feasibility is difficult to achieve
a multi-walk strategy seems to be the better choice.

5 Conclusion and future work

This paper introduced an effective multithreaded incremental solving method
for metaheuristics using the concept of step chasing. This method was in-
tegrated into the OptaPlanner solver and compared against the default non-
multithreaded metaheuristics on four difficult combinatorial optimization prob-
lems: the nurse rostering problem, the vehicle routing problem, the curriculum
course timetabling problem and the cloud balancing problem. It shows signif-
icant speedups and better solutions.

An important requirement of the method are reproducible runs. This highly
impacted architecture. Dropping this requirement could yield additional per-
formance and scaling benefits. Future research is needed to quantify such ben-
efits.

As it stands, experiments show diminishing returns as the child thread
count increases or as move evaluation duration decreases. This is likely due
to congestion in the operation and result queue. This leads to two potential
improvements which ought to be addressed in future research:

— Ship multiple moves in bulk through the operation and result queues in
order to decrease the frequency with which parent and child threads operate
on it.

— Redesign an architecture in which the child threads do not share the same
operation and result queue. For example, there could be one operation
queue per child thread, such that only the parent thread and one child
thread interact with the same queue (except for work stealing by other
child threads which have already emptied their own operation queue). Al-
ternatively, the result queue could be replaced by a reduce operation similar
to that found in MapReduce.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

104

Geoffrey De Smet, Tony Wauters

Further research is also needed to determine how well this technique applies
on other metaheuristics, such Genetic Algorithms, Particle Swarm Optimiza-
tion and Ant Colony Optimization.

Acknowledgements Editorial consultation provided by Luke Connolly (KU Leuven).

References

1. Alba, E.: Parallel metaheuristics: a new class of algorithms, vol. 47. John Wiley & Sons
(2005)

2. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new
trends. International Transactions in Operational Research 20(1), 1-48 (2013)

3. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling
problems. In: PATAT 2008 Conference, Montreal, Canada, pp. 1-7 (2008)

4. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the
art of nurse rostering. J. of Scheduling 7(6), 441-499 (2004). DOI 10.1023/B:JOSH.
0000046076.75950.0b. URL https://doi.org/10.1023/B:JOSH.0000046076.75950.0b

5. Crainic, T.G., Toulouse, M.: Parallel strategies for meta-heuristics. In: Handbook of
metaheuristics, pp. 475-513. Springer (2003)

6. Crainic, T.G., Toulouse, M.: Parallel meta-heuristics. In: Handbook of metaheuristics,
pp. 497-541. Springer (2010)

7. De Smet, G., open source contributors: OptaPlanner User Guide (2006). URL https:
//wwu.optaplanner.org. OptaPlanner is an open source constraint solver in Java

8. Glover, F., Laguna, M.: Tabu search. In: Handbook of combinatorial optimization, pp.
2093-2229. Springer (1998)

9. Haspeslagh, S., De Causmaecker, P., Schaerf, A., Stglevik, M.: The first international
nurse rostering competition 2010. Annals of Operations Research 218(1), 221-236
(2014)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. sci-
ence 220(4598), 671-680 (1983)

11. Talbi, E.G.: Parallel combinatorial optimization, vol. 58. John Wiley & Sons (2006)

12. Verhoeven, M.G.A., Aarts, E.H.L.: Parallel local search. Journal of Heuristics 1(1),
43-65 (1995). DOI 10.1007/BF02430365. URL https://doi.org/10.1007/BF02430365

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

