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Abstract We present a heuristic based on linear programming (LP) for the
integrated tour and crew roster planning of toll enforcement inspectors. Their
task is to enforce the proper paying of a distance-based toll on German motor-
ways. This leads to an integrated tour planning and duty rostering problem; it
is called Toll Enforcement Problem (TEP). We tackle the TEP by a standard
multi-commodity flow model with some extensions in order to incorporate the
control tours.

The heuristic consists of two variants. The first, called Price & Branch, is
a column generation approach to solve the model’s LP relaxation by pricing
tour and roster arc variables. Then, we compute an integer feasible solution
by restricting to all variables that were priced. The second is a coarse-to-
fine approach. Its basic idea is projecting variables to an aggregated variable
space, which is much smaller. The aim is to spend as much algorithmic effort
in this coarse model as possible. For both heuristic procedures we will show
that feasible solutions of high quality can be computed even for large scale
industrial instances.
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1 Introduction

Toll systems are an active research area, especially the aspect of toll road
pricing, partly in consideration of congestion on roads. When designing toll
systems a common approach is to utilize bi-level programming models as pre-
sented in [1] or [2]. Toll pricing to reduce traffic congestion is studied by [3] or
more recently by [4].

We consider a rather neglected operational aspect of toll systems, namely
the enforcement of the toll. But planning of control resources and in particular
the rostering of employees, that conduct the enforcement, is not limited to the
case of a toll. It is an important challenge in many real-world applications,
e.g., police inspections, ticket inspections or other security related tasks. Here,
we focus on the enforcement of the truck toll on German motorways and main
roads, a network of around 50k kilometers. All trucks weighting at least 7.5
tonnes must pay a distance based toll. Fares differ according to the vehicle
weight, the number of axis and the emission class. Introduced in 2005 on
motorways and extended in 2018 to all main roads, it makes one of the most
important contribution to the budget of public roads maintenance. Hence, it
is needed to organize the limited control resource as effectively as possible.

Since the system is barrier-free, toll evasion is basically possible. The Ger-
man Federal Office for Goods Transport (BAG) is responsible for the enforce-
ment of the toll. It is conducted by a combination of traffic control gantries
or devices for automatic stationary camera control and spot-checks by more
than 400 mobile control inspectors. The spot checks are carried out as part
of control tours by approximately 250 control teams of one or two inspectors.
Due to practical aspects the teams are divided into more than 20 regions.

In an on-going research and development project with the BAG we develop
methods and a software tool to compute optimal control tours and crew ros-
ters of the inspectors. We have called this integrated tour planning and duty
rostering problem the Toll Enforcement Problem (TEP). At BAG the plan-
ning is organized as monthly planning problem. Two or four sections of the
network are controlled during a mobile tour each for a fixed time interval of
approximately 2 or 4 hours.

In the TEP a duty corresponds to a control tour starting at a certain
time in some depot. After some hours the tour ends in the same depot. The
tours are not given in advance, they have to be created by tasks consisting
of controlling a certain section of a motorway (or more precisely a subarea of
the toll network) in a corresponding time interval. A tour is a combination
of such tasks. The main difference to standard rostering lies in the integrated
optimization of tours and rosters. This integration is necessary because it is
unclear what work has to be done beforehand and crews can only conduct
controls in the area of their home depots. Therefore, it is important to prevent
the planning of tours for which no crew is available.

The TEP was presented inter alia in [5] where an extensive description
of the modeling power of the approach is given, including an analysis of the
bi-criterion character of the TEP and computational results that analyze the
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complexity of real-world instances. In the literature there are different ap-
proaches to solve inspection problems that are similar to our application. The
authors of [8] consider the problem of fare evasion. Optimal control strate-
gies are derived by game theory. While our focus is rostering, another recent
report [9] considers the generation of duties for railway security teams by con-
catenating inspection tasks on trains or platforms.

In this paper, we propose a column generation approach to solve the TEP.
In a standard approach we solve the LP relaxation of the TEP IP by an
arc generation method. After the root node LP is solved to optimality the
restricted IP is solved with the set of variables generated during column gen-
eration in the root node. In fact, we develop a heuristic since feasibility is not
guaranteed.

Our main contribution - that can be seen as a modification of the standard
approach - is the adoption of a method called Coarse-to-Fine. This method
was first used by the authors of [6]. They introduced a coarsening approach
to the Railway Rolling Stock Rotation Problem. It is also presented in [7].
The basic idea is to introduce a coarsening projection on the variables of the
original model. It leads to a coarser model with significantly less variables.
Then the problem is solved via column generation on the coarse level. We
will show that the coarse reduced costs overestimate the fine reduced costs.
Afterwards, again the IP is solved with the columns generated in the root
node. The major benefit in comparison to other heuristic approaches is that
we are able to provide a quality measure.

The paper is structured as follows: In Section 2 we shortly define the TEP
and recapitulate a corresponding formulation. Thereafter, in Sections 3, 4
and 5 the Coarse-to-Fine approach is presented. Finally, Section 6 discusses
computational results for both approaches and Section 7 concludes the paper.

2 A Multicommodity Flow Formulation

The TEP is formulated by a standard multi-commodity flow model with some
extensions in order to incorporate the control tours. It is based on a scheduling
graph G = (D,A)). There, the set D corresponds to duties for the inspectors
plus artificial source and sink nodes. If two duties u ∈ D and v ∈ D can be
performed successively by the same inspector we construct an arc (u, v) ∈ A
in G. Additionally, there are arcs (ŝ, v) ∈ A leaving the source node ŝ ∈ D and
arcs (u, t̂) entering the sink node t̂ ∈ D, respectively. Hence, a feasible duty
roster corresponds to a ŝ-t̂-path in G. The model uses binary variables zd to
decide if a control tour d ∈ D is chosen. In addition, there are binary flow
variables xma that are one if arc a ∈ A is used by inspector m ∈M .

Typical constraints for the tour variables are section covering and section
capacity constraints. The first guarantee each section to be visited and the
latter that not more than one control team conducts a control on a section
during the same time. For the rostering part classical flow value and flow con-
servation constraints are combined with different types of resource constraints.
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Coupling constraints link the tour variables with the roster graph. For more
details we refer to our earlier work [5].

The overall goal is to compute a reward-maximal set of control tours. The
reward of a section depends both on its amount of traffic depending on the
time and the day of the week and on the quota of fare evaders in the past. In
addition, costs on the sequence arcs represent penalties for soft rule violations.
With this model a lot of rules can be modeled implicitly in the scheduling
graph. A typical example are minimum rest times. There exist also other rules,
e.g., monthly working hours, that are modeled as resource constraints.

A major task is to find a compromise between quality and quantity of con-
trols as well as providing fair roster schedules for the inspectors such that the
acceptance of the optimized schedules can be increased. The modeling power
of Mixed Integer Programming and the ability of rapid model modifications
in order to cope with moving targets have been an important instrument to
solve real-world instances. For practical reasons the tours consist of two parts
only (for an efficient control it is required to stay for some time in an area).
Therefore, the main complexity of the model stems from the rostering part.
The incorporation of the tours can be seen as an extension of the classical
rostering flow model. According to the requirement that inspectors can only
conduct controls in their regional area, the number of tours and roster sequence
variables is still in a range that allows a complete tour generation.

Since the beginning of 2014, the algorithm and software based on this
model and the commercial MIP solver CPLEX is in production to schedule
all toll enforcement inspectors of BAG in Germany. In contrast to many other
rostering problems, model TEP is directly solvable by a general-purpose solver
such as CPLEX if the number of arcs and tours does not exceed, say, 2 mil-
lion. But in some cases the resulting MIP formulation becomes too large and
intractable or slow even for commercial MIP solvers. In addition the vast ma-
jority of arcs and tours will not be part of a feasible solution. This motivated
us to develop a heuristic approach and transfer the idea of dynamic variable
generation methods and Coarse-to-Fine to this application.

3 Applying an LP-based heuristic

The main contribution is a heuristic based on Linear Programming (LP) to
solve the integrated problem. An important precondition is the fact that the
reduced costs can easily be computed in the TEP, since all tours and duty
sequence arcs are generated in advance. The heuristic uses a Coarse-to-Fine
approach to solve the LP-relaxation of the TEP by column generation. The
basic idea of Coarse-to-Fine is to identify unprofitable clusters of variables
and to focus on the parts that promise an improvement of the objective value.
In this concept our original model is called the fine model. We introduce a
coarsening projection for the variables of the fine model. Several variables
from the fine model are mapped to a single variable in the coarse model.
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The general definition is as follows: We are given a linear program

max pTx, s.t.Ax ≤ b, x ≥ 0

with J as the index set of the variables. We introduce a coarsening projection

[·] : J → [J ]

that maps J onto a smaller index set [J ], where some variables are aggregated.
Therefore, the coarse model has significantly fewer variables than the fine
model. Furthermore, for a matrix A let Aij be the entry in the i-th row and
in the j-th column. We introduce the coarse matrix [A] ∈ RI×[J] by defining
for each j ∈ [J ] the coarse column vector [A]·j as follows:

[A]ij :=([A]ij1, [A]ij2)

:=(min {Aik | k ∈ J : [k] = j},max {Ail | l ∈ J : [l] = j}).

The coarse objective coefficients are defined by [p]j := maxk∈J{pk | [k] = j}
for all j ∈ [J ]. A similar approach where rows were aggregated was introduced
to the Railway Rolling Stock Rotation Problem in [6].

The trick is now to solve the fine problem by a column generation algorithm
that operates mainly on the coarse level. To price the variables in the coarse
model, a proper definition of the coarse reduced cost is necessary. Let α ∈ RI

be an optimal dual solution for the restricted master problem in the fine layer.
Then let us define how to multiply such a vector with a coarse matrix:

x̂ ∈ Ra, ŷ ∈ (R,R)a, a ∈ N, a ≥ 1

that

x̂T ∗ ŷ :=

a∑
i=1

min {x̂iŷi1, x̂iŷi2}

where ŷi = (ŷi1, ŷi2). Then we can define the coarse reduced cost as:

[τ ]j := [p]j − α
T ∗ [A]·j , j ∈ [J ].

We are now ready to state the crucial property that the coarse reduced costs
overestimate the (fine) reduced costs.

Lemma 1 (Coarse Reduced Cost Lemma) The coarse reduced cost over-
estimate the (fine) reduced cost:

[τ ]j = [p]j − α
T ∗ [A]·j ≥ pk − α

T ·A·k = τk ∀k ∈ J : [k] = j, j ∈ [J ].

Proof Since [p]j = maxk∈J{pk|[k] = j} it holds that [p]j ≥ pk. It also holds

that [A]ij1 ≤ Aik ≤ [A]ij2 and with the ∗-operation we get αT ∗ [A]·j =∑
i∈I min {αi · [A]ij1, αi · [A]ij2} ≤

∑
i∈I αi ·Aik = αT ·A·k. Hence, [p]j −αT ∗

[A]·j ≥ pk − αT ∗ [A]·j ≥ pk − αT ·A·k.
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4 Coarse-to-Fine column generation

The bounding property of the coarse reduced cost is used to design a Coarse-
to-Fine column generation algorithm. Briefly, it works as follows: In the first
place, we only have to compute the reduced costs of the coarse variables. If
these have a positive value then the reduced costs of the corresponding fine
variables will be computed afterwards. Note that we maximize and search for
positive reduced cost in this setting. It is described in Algorithm 4.1. There
we denote the master problem by MP and the restricted master problem by
RMP.

1 Input feasible RMP with start columns J0, coarsening projection [·] and finite set
of total columns J (not part of the RMP yet)

2 Output RMP with columns J ′ and an optimal solution for the MP

3 init J ′ = J0
4 solve RMP with columns J ′

5 compute coarse reduced costs [τ ]

6 let Ĵ := {j ∈ [J ] : [τ ]j > 0}
7 if Ĵ 6= ∅ then
8 compute fine reduced costs τk ∀k ∈ J : [k] ∈ Ĵ
9 let J∗ := {k ∈ J \ J ′ : [k] ∈ Ĵ : τk > 0}

10 if J∗ 6= ∅ then
11 add J̃ ⊆ J∗ to J ′, J̃ 6= ∅
12 goto 4

13 end

14 end

Algorithm 4.1: Coarse-to-Fine column generation algorithm.

The input of Algorithm 4.1 is a feasible RMP and a given coarsening pro-
jection [·]. In line 4 we solve the current RMP with columns J ′. In the first
iteration these are only the initial columns J0 that ensure feasibility. As a
next step we compute the coarse reduced costs in line 5. If there are no coarse
reduced costs with positive value, the algorithm terminates. Otherwise we com-
pute the fine reduced costs for all fine columns which are projections of the
coarse columns with positive coarse reduced costs. If none of the fine columns
have positive reduced costs, the algorithm finishes as well. But if there are fine
columns with positive reduced cost, then we add at least one of them to the
model, jump back to line 4 and repeat the same procedure again.

5 Coarse-to-Fine for the TEP

We consider a problem specific approach for the coarsening projection. Namely,
for the TEP, the coarsening is processed on the arc variables. Let us consider
the scheduling graph G = (D,A) introduced in Section 2. To prepare the
coarsening projection for each day and possible tour, all duty nodes that have
similar starting times are aggregated.
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We divide a day into blocks of two hours and create coarse nodes (one
for each tour, i.e., for each feasible sequence of sections) representing these
blocks. The motivation is basically that the expected traffic does not change
dramatically during neighboring hours as opposed to considering the whole
day. Thus, a coarse decision when a mobile tour starts (or ends) has already
a considerable significance.

This coarsening projection on the nodes induces a coarsening projection
on the arcs: We aggregate all arcs into a coarse arc that share the same coarse
tail node and the same coarse head node. Therefore, for each coarse arc we
introduce a coarse arc variable and map the variables belonging to the fine
arcs that are aggregated in the current coarse arc to the corresponding coarse
variable. In addition, we use a slightly modified definition of coarse reduced
costs that takes the particular structure of the TEP scheduling graph into
account. All constraints, that correspond to the sequence arc variables, only
depend on the corresponding tail and head nodes.

The Coarse-to-Fine approach handles only the inspector arc variables. An
artificial tour variable is maintaining feasibility in the beginning and we do
one step of column generation on the tour variables in each iteration of the
Coarse-to-Fine algorithm. Algorithm 4.1 is applied to the root node LP and
afterwards the IP of the fine model is solved with the columns generated during
the Coarse-to-Fine algorithm.

We compare this approach with a standard column generation approach,
called Price & Branch, to solve the model’s LP relaxation by pricing tour
and roster arc variables. We can deviate this approach from Algorithm 4.1 by
omitting lines (5− 7). Then, we again compute an integer feasible solution by
restricting to all variables that were priced.

6 Computational Results

In this section we present several computational results for the two presented
heuristic approaches. We show how the column generation algorithms decrease
the model size of several industrial instances and that both heuristics (Price-
and-Branch and Coarse-to-Fine) lead in almost all cases to feasible solutions
with a high quality. We aggregated duty nodes sharing the same day, the same
control tour, and starting in the same time block, as described in Section 5.
The time blocks have a length of two hours.

Table 1 gives the basic data for each instance. Every instance represents a
planning scenario for a control region and comprises a time horizon of several
weeks. The length of a section control equals four hours. We set a time limit
of one day for solving the IP. We performed all computations on an Intel(R)
Xeon(R) CPU E5-2670 v2 machine with 2.50GHz and 10 CPU cores. For all
computations we used CPLEX (version 12.6.0.0) as LP and IP solver.

There is a broad range of instances from different regions, with a varying
number of duty types and fixed duties. Instance I3 deviates from the other
instances in that it is only generated for testing purposes. It covers only a plan-
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Inst. Region Inspectors Sections Fixed Duty Rows Columns
Duties Types

I1 r1 21 28 308 8 16469 164775
I2 r2 21 13 206 8 14583 347128
I3 r4 6 28 0 8 2242 27160
I4 r6 22 22 64 9 20727 705410
I5 r3 24 28 137 14 31758 2008131
I6 r5 20 20 37 16 32080 2178483

Table 1 Key characteristics of the TEP instances

ning horizon of one week. Instances I1, I2 and I3 can be solved to optimality
without column generation within one day.

For each instance we ran three different variants. The first, the default IP
run, is called noCG. The second is the Price-and-Branch approach and the third
Coarse-to-Fine. Table 2 presents in columns two, three and five the number of
variables of the original (master) problem, the number of variables priced by
Algorithm CG, and by algorithm CtF, respectively. In column four and six the
relation of the restricted LP for CG and CtF to the noCG is shown in percent.
As expected the number of priced variables is much smaller compared to the
number of variables in the original model. As an example, instance I4 has in
total around 705,000 variables. The restricted problem after running the Price-
and-Branch algorithm has only 97,000 columns. In case of Algorithm 4.1 the
column size even reduces a litte more to 84,000. Instance I5 has even a higher
reduction with more than 90%.

Table 3 gives the results of solving the TEP IP both with the full model and
with the columns generated by the column generation algorithms. Columns
two to four give the solution of the IP run and columns five to seven the
objective values either when the time limit is reached or if optimality is proven.
We remind that an optimal solution of the IP restricted to the generated
variables is not necessary optimal for the original problem but feasible.

On average, we achieved a considerable speed-up with all versions. For
instance I1 the decrease of running time is extreme. For I3 there is in fact
no need for column generation. Fortunately, for all instances feasible solutions
could be found when solving the IP with the generated columns. Furthermore,
all instances finished before reaching the time limit for CG and CtF. Raising

Instance noCG CG % CtF %

I1 164775 31898 19.4 26366 16.0
I2 347128 60371 17.4 60082 17.4
I3 27160 2749 10.1 2788 10.3
I4 705410 97170 13.8 83921 11.9
I5 2008131 158497 7.9 156550 7.8
I6 2178483 143860 6.6 127646 5.8

Table 2 Model reduction measured by number of variables in the different LP relaxations
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Time IP Objective
Instance noCG CG CtF noCG CG CtF

I1 29,168.24 58.78 9.73 385,744 379,987 381,568
I2 15,573.29 171.86 131.76 776,919 768,434 766,635
I3 0.48 0.08 0.15 65,392 65,392 65,392
I4 86,408.14 1807.30 482.98 492,754 478,913 475,269
I5 86,400.93 49,973.54 14,930.88 530,344 518,593 517,169
I6 86,414.98 32,005.40 79,280.61 538,749 521,458 520,542

Table 3 Comparison of solution time and quality for the different methods

the time limit for I4 to I6 would lead to a longer running time for noCG and
therefore to a smaller proportion in terms of running time for CG and CtF. On
the other hand, despite not finishing, version noCG yields good IP solutions. In
all cases, the IP best incumbent values of noCG are better (to a small fraction)
than the ones by the heuristics. But in many cases (e.g. I1 or I5 ) the differences
are small enough to claim that our approaches yield good integral solutions.
The results give a strong indication that CtF yields the smallest models and
in many cases the best running times.

7 Conclusion

We presented two heuristics based on linear programming for a rostering prob-
lem in the area of toll enforcement on German motorways. We tackle the TEP
by a standard multi-commodity flow model with some extensions in order to
incorporate the control tours. One heuristic, called Price-and-Branch, is a col-
umn generation approach to solve the model’s LP relaxation by pricing tour
and roster arc variables.

The main contribution is a coarse-to-fine approach. There, several variables
from the original model, called fine model, are mapped to a single variable in an
aggregated model, the coarse model. First, we presented a generic approach to
general linear programs and applied it to the TEP. We discussed the important
property that the coarse reduced costs overestimate the fine reduced costs.
Then column generation is performed on the coarse level. In both cases (Price-
and-Branch and Coarse-to-Fine), we compute an integer feasible solution by
restricting to all variables that were priced.

For both heuristic procedures we showed that feasible solutions with high
quality can be computed even for large industrial instances. An important
issue for future research is to solve instances with a large number of duty
types (> 16) or a minor control duration that could not be solved so far.
Another idea would be to add an additional algorithmic step to the Coarse-to-
Fine, like the coarse reduction [6] in the railway setting, to compute additional
suitable columns by fast combinatorial algorithms for a faster convergence.
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