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Abstract This paper considers the problem of assigning matches to time slots
in a double-round robin sports tournament. An integer linear programming
(ILP) model is developed which includes a variety of hard and soft constraint
that are likely to be encountered when scheduling professional football/soccer
league fixtures. The solution methodology used is a matheuristic that fixes a
large number of variables in the ILP model at each iteration to enable a solu-
tion to be generated relatively quickly. In this fix-and-relax approach, different
methods are used to determine which variables are to be fixed. Computational
results are given for the instances having 16, 18 and 20 teams that form an
international timetabling competition on sports timetabling (ITC2021). The
main findings are that the matheuristic finds solutions for most ITC2021 in-
stances relatively quickly with all hard constraints satisfied, and generates
many best-known solutions for these instances.
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2 Carlos Lamas-Fernandez et al.

1 Introduction

Research on designing algorithms for scheduling sports competitions has taken
place for almost fifty years, although interest in this research topic has in-
creased during the last twenty years. For an overview of the major contribu-
tions, we refer to Knust [5]. In this paper, we address the scheduling of dou-
ble round-robin tournaments of the type used in many European and South
American football/soccer leagues where each team in the competition plays
one home game and one away game against every other team. Goossens and
Spieksma [4] provide an overview of the structure of the main football leagues
in Europe. As pointed out by Van Bulck et al. [6], most publications focus on
designing an algorithm that is suited to the constraints imposed by a particu-
lar league. As a consequence, computational work assessing the relative perfor-
mance of such algorithms is scarce. This has motivated a unified data format
for round-robin sports timetabling by Van Bulck et al. [7] that facilitates the
comparison of algorithmic approaches. It has also motivated the International
Timetabling Competition on Sports Timetabling, named ITC2021 [8], that
“aims to stimulate the development of solvers for the construction of round-
robin timetables”. This paper reports on the solver developed by the authors
for the double round-robin sports scheduling problem (DRRSSP), and pro-
vides computational results in the form of objective function values for the 45
instances on which the result of ITC2021 is based.

The double round-robin tournaments of ITC2021 are compact, meaning
that in each time slot every team has exactly one match. We distinguish
between phased and unphased double round-robin tournaments. In a phased
tournament, the matches played in the first half of the slots comprise a single
round-robin tournament, and similarly for the matches in the second half of
the slots, whereas an unphased tournament has no such constraints on the
matches. A break occurs if a team plays at home in some slot having played
at home in its previous slot (home break), or if a team plays away in some slot
having played away in its previous slot (away break).

There are different classes of constraints on the DRRSSP. These arise due
to the interests of multiple stakeholders. The football clubs competing in a
tournament are concerned about maximizing revenue by having their home
matches being played in slots when more fans are likely to be able to watch the
game. They also prefer schedules in which home and away matches alternate,
thereby reducing the number of breaks. Teams that use the same stadium
clearly create constraints, and other events occurring within the vicinity of
the stadium in certain time slots may prevent a home match being assigned to
these slots. The police are responsible for safety outside of the ground, which
may impose constraints on the number of teams playing in the same city in
the same slot. TV companies invest significantly in gain broadcasting rights to
the matches, and may prefer schedules having the most high-profile matches
spread throughout the season.

This aim of our study is to propose a new algorithm for creating sched-
ules for the DRRSSP, and to evaluate this approach on the 45 instances of
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Scheduling Double Round-Robin Sports Tournaments 3

the ITC2021 competition. In Section 2, we provide a formal description of the
DRRSSP that we are addressing, and Section 3 contains an integer program-
ming formulation of the problem. Section 4 describes our proposed matheuris-
tic, which takes the form of a fix-and-relax procedure. Computational results
obtained by applying our matheuristic to the 45 instances provided within
ITC2021 are presented and discussed in Section 5. Lastly, Section 6 contains
some concluding remarks.

2 Problem Description

For the DRRSSP, it is required to design a round-robin tournament that allo-
cates matches to time slots. However, Van Bulck et al. [6] observe from various
studies reported in the literature that there can be various constraints that
affect how the matches are scheduled.

Let n denote the number of teams competing in the double round-robin
tournament, where n is even. Further, let T = {1, . . . , n} be the set of all
teams. For each pair of teams i, j ∈ T , where i < j, there is match (i, j)
for which team i plays a home game against team j and a match (j, i) for
which team i plays an away match against team j. Thus, each team plays
n − 1 home games at its own venue and n − 1 away games at its opponent’s
venue. The tournament has a set S of time slots for the matches. We assume
that the minimum number of time slots is used so that S = {1, . . . , 2n − 2},
which produces a compact tournament. If the matches that are played in slots
1, . . . , n− 1 define a single round-robin tournament, then the matches in slots
n, . . . , 2n−2 also define a single round-robin tournament, and such a structure
is phased tournament. For a phased tournament, we define S′ = {1, . . . , n− 1}
to be the set of slots used for the first phase.

There are structural constraints that ensure that the matches assigned to
time slots satisfy the conditions of a double round-robin tournament, with
additional constraints added if the tournament is phased. However, there are
many other types of constraints within ITC2021, as listed below, which can
either be hard or soft.

Capacity constraints: within a given set of time slots, a team is forced to play
at home or away, and the total number of matches played by a team or by
a set of teams has an upper limit.

Game constraints: given a set of time slots and a set of matches, the number
of matches assigned to these time slots has an upper limit and a lower
limit.

Break constraints: within a given set of time slots, there is an upper limit on
the total number of breaks for a given set of teams.

Fairness constraints: within each of a given set of slots, there is an upper limit
on the largest difference in the number of home games played between each
pair of teams within a given set.
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4 Carlos Lamas-Fernandez et al.

Separation constraints: for a given set of teams, there is a lower limit on
the gap between home and away matches between each pair of teams in
this set.

A solution of the DRRSSP has, for each soft constraint, a non-negative
deviation that specifies the number of units of violation of the constraint.
Also, each soft constraint has an associated weight that represents the penalty
per unit violation of the constraint. The objective of the problem is to design
a double round-robin tournament in which all hard constraints are satisfied so
that the sum of weighted deviations for all soft constraints is minimized.

3 Integer Linear Programming Model

Our integer linear programming (ILP) model has variables and structural con-
straints that are widely used in round-robin sports scheduling, such as in the
study of Durán et al. [3]. The key parameters used in our ILP are the set of
teams T and the set of slots S, as defined in Section 2, with S′ representing
the set containing the first half of the slots.

The variables in our integer programming model that define the structure
of the tournament are

xijs =

{
1 if match (i, j) is played in slot s,

0 otherwise.
∀i, j ∈ T, ∀s ∈ S

However, some tournament specifications impose constraints on numbers of
breaks that are allowed. Thus, we introduce additional variables

bHA
is =

{
1 if i has a home or away break in slot s,

0 otherwise.
∀i ∈ T, ∀s ∈ S \ {1}

In some cases, it is necessary to differentiate between a home break and an
away break. Thus, if bHA

is = 1, then bHis = 1 or bAis = 1 depending on whether
a home break or an away break occurs for team i in slot s. Also, there is a
relationship bHA

is = bHis + bAis for all i ∈ T and s ∈ S \ {1}. Also, when there are
constraints on the separation in terms of the number of slots between the two
matches played by a pair of teams i and j, it is useful to introduce the variables

yij =

{
1 if match (i, j) occurs before match (j, i),

0 otherwise.
∀i, j ∈ T

The following subsections provide the classes of constraints that are in-
cluded in the model. There are some structural constraints given below in
Section 3.1 which must be satisfied in a double round-robin tournament. The
remaining constraints are non-structural.

Each non-structural constraint has an index by which it is identified. Asso-
ciated with most constraints c is a threshold value tc, which is the maximum
value that some linear combination of the xijs, b

H
is, b

A
is, b

HA
is and yij variables

can achieve without incurring a penalty. In such cases, the right-hand side of
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Scheduling Double Round-Robin Sports Tournaments 5

the constraint is set to tc + dc, which dc is an integer deviation variable for
constraint c. The remaining constraints c have a threshold value tc, which is
the minimum value that some linear combination of the xijs, b

H
is, b

A
is, b

HA
is and

tij variables can achieve without incurring a penalty. For these constraints,
the right-hand side of the constraint is set to tc − dc, which dc is an integer
deviation variable for constraint c. If a constraint c of either type is hard, we
introduce dc = 0 as a further constraint.

3.1 Structural constraints

The structural constraints on a double round-robin tournament ensure that
the variables are assigned values that create a valid tournament. The structural
constraints are all hard. The first set of constraints below ensure that within
each slot s team i either has a home game or an away game against some
other team j. The second constraints impose the condition that a match (i, j)
for each pair of teams i and j appears in exactly one slot. The third set of
constraints, which are applied only when the DRRSSP is phased, force all
pairs of teams i and j to play exactly one match in the first half of the time
slots S′, and consequently exactly one match in the second half of the time
slots S \ S′.∑

j∈T\{i}

(xijs + xjis) = 1 ∀i ∈ T, ∀s ∈ S (1)

∑
s∈S

xijs = 1 ∀i, j ∈ T (2)∑
s∈S′

(xijs + xjis) = 1 ∀i, j ∈ T (3)

The constraints linking the bHis and bAis variables with the xijs variables are∑
j∈T

(xijs + xi,j,s−1)) ≤ bHis + 1 ∀i ∈ T, s ∈ S \ {1} (4)

∑
j∈T

(xjis + xj,i,s−1) ≤ bAis + 1 ∀i ∈ T, s ∈ S \ {1} (5)

Further, the constraints linking yij with the xijs variables are∑
s∈S

s(xjis − xijs) ≤Myij ∀i, j ∈ T (6)∑
s∈S

s(xijs − xjis) ≤M(1− yij) ∀i, j ∈ T (7)

where M is a constant that satisfies the condition M ≥ |S| − 1.
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6 Carlos Lamas-Fernandez et al.

3.2 Capacity constraints

The DRRSSP has four types of capacity constraints. These sets of constraints
are denoted by CA1, CA2, CA3 and CA4.

There is a set CA1 = CAH
1 ∪ CAA

1 of home and away capacity constraints
of type 1. Each constraint c of CA1 is specified by a team ic, a set of slots Sc

and a threshold value tc. The home capacity constraint is

∑
j∈T

∑
s∈Sc

xijs ≤ tc + dci ∀c ∈ CAH
1 , i = ic (8)

while the corresponding constraints for c ∈ CAA
1 are identical except that xijs

is replaced by xjis.

The capacity constraints c of types 2 and 3 are each specified by a team
ic, a set of teams Tc and a set of slots Sc for type 2 constraints. Also, there
are constraints that refer to home games, away games, and home-away games
that are index by H, A and HA. Thus, the constraint sets are CAt = CAH

t ∪
CAA

t ∪ CAHA
t for types t = 2 and t = 3. The home constraints for type 2 and

type 3 are

∑
j∈Tc

∑
s∈Sc

xijs ≤ tc + dci ∀c ∈ CAH
2 , i = ic (9)

∑
j∈Tc

k+Ic∑
s=k+1

xijs ≤ tc + dci ∀c ∈ CAH
3 , i = ic, ∀k ∈ K (10)

where K = {0, . . . , |S| − Ic} and Ic is the length of an interval defining the
slots to be considered for type 3 constraints. The corresponding constraints
for c ∈ CAA

t and c ∈ CAHA
t for t = 2 and t = 3 are identical except that xijs

is replaced by xjis for away constraints and are xijs is replaced by xijs + xjis

for home-away constraints.

Type 4 capacity constraints are specified by two sets of teams Tc1 and
Tc2, and a set of slots Sc. The constraint set is CA4 = CAH

4 ∪ CAA
4 ∪ CAHA

4 .
Moreover, the home constraint set comprisesCAH

4 = CAH
4a∪CAH

4b where CAH
4a

and CAH
4b are defined by

∑
i∈Tc1

∑
j∈Tc2

∑
s∈Sc

xijs ≤ tc + dc ∀c ∈ CAH
4a (11)

∑
i∈Tc1

∑
j∈Tc2

xijs ≤ tc + dc ∀c ∈ CAH
4b, ∀s ∈ Sc (12)

The away, and home-away constraints are similarly partitioned, with the re-
placement of xijs by xjis and xijs+xjis, respectively, providing the constraints.
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Scheduling Double Round-Robin Sports Tournaments 7

3.3 Game constraints

The set of game constraints is denoted by GA. For each constraint c ∈ GA, a
set Sc of slots and a set Gc of games are specified. A game in which team i
plays at home against team j is denoted by (i, j). The constraints are

∑
(i,j)∈Gc

∑
s∈Sc

xijs ≤ tc + dc ∀c ∈ GA (13)

∑
(i,j)∈Gc

∑
s∈Sc

xijs ≥ t′c − dc ∀c ∈ GA (14)

where t′c is a lower limit on the number of games from Gc that are played in
the slots of Sc. For each c ∈ GA, there are lower and upper bound constraints,
although a positive dc value for one of these constraints implies that the other
constraint is satisfied as a strict inequality.

3.4 Break constraints

There are two types of constraints that limit numbers of breaks. The set of type
1 breaks is denoted by BR1 = BRH

1 ∪BRA
1 ∪BRHA

1 , where home breaks, away
breaks and home-away breaks are considered. Each type 1 break constraint c
specifies a team ic and a set of slots Sc. The home break constraints of type 1
are ∑

s∈Sc

bHis ≤ yc + dc ∀c ∈ BRH
1 , i = ic (15)

while the away and home-away break constraints of BRA
2 and BRHA

3 are of a
similar form.

A set BR2 specifies the type 2 break constraints. Each constraint c ∈ BR2

specifies sets Sc of slots Tc of teams. These type 2 break constraints are∑
i∈Tc

∑
s∈Sc

bHA
is ≤ tc + dc ∀c ∈ BR2 (16)

3.5 Fairness constraints

Fairness constraints aim to ensure that pairs of teams play approximately the
same number of home games at the end of selected slots. The set of fairness
constraints is denoted by FA. Each constraint c ∈ FA specifies a pair of teams
ic and i′c and a set of slots Sc. The constraints are

∑
j∈T

ŝ∑
s=1

(xijs − xi′js) ≤ tc + dc ∀c ∈ FA, i = ic, i′ = i′c, ∀ŝ ∈ Sc (17)
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8 Carlos Lamas-Fernandez et al.

3.6 Separation constraints

A set SE of separation constraints aims at avoiding the two matches between
a pair of teams being too close together. Each constraint c ∈ SE specifies a set
Tc from which the pairs of teams are selected. The constraints are

∑
s∈S

s(xijs − xjis) ≥ tc + 1− dc −Myij ∀c ∈ SE, ∀i, j ∈ Tc (18)

3.7 Objective function

Let C = CA1∪CA2∪CA3∪CA4∪GA∪BR1∪BR2∪FA∪SE be the set of all
the constraints in the problem, excluding the structural constraints defined in
Section 3.1. Let C = C̃ ∪ C̄ where C̃ is the set of soft and C̄ is the set of hard
constraints. Let wc be the given unit penalty for constraint c ∈ C̃. Then the
objective function can be written as

Min
∑
c∈C̃

wcdc (19)

Recall that we set dc = 0 for all c ∈ C̄ to guarantee feasibility.

4 Matheuristic

Our Matheuristic algorithm relies on the ILP model described in Section 3.
The instances created for ITC2021 are very challenging, and the ILP model is
unable to solve them with Gurobi (version 9.0) using reasonable computational
effort, mainly because of the size in terms of numbers of teams, soft constraints
and hard constraints. Therefore, the rationale in this study is to solve smaller
problems so that we can expect a competitive behaviour from the solvers that
are currently available.

The fix-and-relax matheuristic approach (also known as relax-and-fix) pro-
vides a framework for producing solutions for ILPs by solving a series of smaller
problems. These smaller problems are created by fixing many of the variables
and then solving the ILP for the variables that are not fixed. The early research
on fix-and-relax concentrated on lot-sizing problems and was initiated by Dil-
lenberger et al. [2]. More recently, fix-and-relax has been applied in sports
scheduling to the traveling umpire problem (TUP) by de Oliveira et al. [1].
In the traveling umpire problem, matches in a round-robin tournament are
specified as an input, and it is required to allocate an umpire to each match so
that the total distance traveled by the umpires is minimized. In the study of de
Oliveira et al., there are binary assignment variables that define the allocation
of umpires. The high-quality of the solutions obtained for the TUP suggests
that a fix-and-relax approach could be successful for our DRRSSP.
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Scheduling Double Round-Robin Sports Tournaments 9

One obvious strategy is to consider as a first step only the hard constraints
and check whether the ILP in which the soft constraints are ignored is solvable
with a reasonable amount of computational effort. However, we have identified
that this relaxation is not sufficient for the instances provided in the ITC2021
competition because there are no instances for which a feasible solution can be
obtained. Consequently, our proposed strategy is based on fixing a subset of
the variables to specific values, where the method of variable fixing takes into
account the features of the current solution. The other variables will remain
as decision variables, thereby producing a fix-and-relax approach. Based on
this idea, we introduce five different neighbourhoods to be used at the two
stages of our algorithm. In the first stage, we aim to find a feasible solution
ignoring the soft constraints, while the second stage considers the full model.
In the first stage we propose a Variable Neighbourhood Search (VNS), and in
the second stage we propose a Variable Neighbourhood Descent (VND) using
the same neighbouring structure but adding a multi-start feature.

We define ILPc to the constrained new ILP model in which we fixed some
of the variables to predefined values. We also denote by x̂ijs by the value
of each variable xijs in the current solution. In Section 4.1 we define the
neighbourhoods, while Sections 4.2 and 4.3 then explain the VNS and VND
approaches that are used in the corresponding stages of the algorithm.

4.1 Neighbourhoods

We use the following neighbourhoods (N1-N5). All of these neighbourhoods
are based on a fix-and-relax approach using the ILP, where several ILP models
are solved by Gurobi with a time limit imposed (in our experiments, we ran
tests with 30, 60 and 600 second per model).

N1 Slots. In this neighbourhood we select a subset of slots S̄ ⊆ S and then
we fix all the other slots as in the current solution, i.e, xijs = x̂ijs for all
i, j ∈ T and s ∈ S \ S̄. This neighbourhood requires a new parameter for
the algorithm, n1, which is the number of slots to be selected in S. We
perform as many iterations as constraints we have violated in the model,
and for each constraint violated we select the slots where there is any match
scheduled that contributes to the Left Hand Side (LHS) of the constraint.
We then randomly add other slots until n1 slots are chosen.

N2 Teams. In this neighbourhood, we select a subset of teams T̄ ⊆ T and
then we fix all the matches for all pairs of teams, except the pairs i, j ∈ T̄ ,
which remain as variables. Therefore, xijs = x̂ijs and xjis = x̂jis, ∀i ∈
T, j ∈ T \ T̄ , s ∈ S. As in N1, this neighbourhood also requires a new
parameter, n2s, which is the number of teams that will be considered in
T̄ . Similarly to N1, for each constraint we select in T̄ the teams that are
contributing to the left-hand side of the inequalities violated in the current
iteration. We then randomly add other teams until n2 teams are chosen.

N3 Rows and Columns. We select a subset of slots S̄ ⊆ S and a subset of
teams T̄ ⊆ T , and then we fix all the matches that are not scheduled on
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10 Carlos Lamas-Fernandez et al.

any slot in S̄ and both teams are not in T̄ , i.e, xijs = x̂ijs, ∀i, j ∈ T \T̄ , s ∈
S \ S̄. Slots in S̄ are selected in a similar way as in N1, but we select only
n1/2 slots, and also we always select 2 teams in T̄ , and these two teams
are always the ones contribute more towards the violation of the current
violated constraint being analysed.

N4 Phased (only for phased tournaments). We fix one half of the competi-
tion and we optimise the other half, i.e, we solve first the model where
xijs = x̂ijs, ∀s ∈ {1, . . . , |S|/2}, and then the model in which xijs = x̂ijs,
∀s ∈ {|S|/2 + 1, . . . , |S|}. We solve only two models every time we use this
neighbourhood.

N5 Home and away. In this neighbourhood, we allow home and away matches
between the same pair of teams to be swapped. Specifically, we fix xijs = 0,
for all i, j ∈ T and s ∈ S such that x̂ijs + x̂jis = 0. This neighbourhood
has no random selection, but the resulting model is generally challenging.
Thus, in our computer experiments, Gurobi rarely proves optimality, and
generally stops due to the time limit condition.

4.2 Checking feasibility - VNS (Hard only)

In this stage we consider the ILP where all the soft constraints except the
BR2 are ignored. If a feasible solution is found, it is then used for the second
stage (Section 4.3). A high-level pseudo-code is presented in Algorithm 1.

An initial solution where many of the constraints are violated is found by
solving the ILP model only with the structural constraints (see Section 3.1)
and ignoring all the other constraints. We refer to that solution as Sol0, which
generally has many other constraints that are violated. We then compute the
value of total deviation that corresponds to solution Sol0, and set F0 be that
value (line 2 Algorithm 1).

In line 7 we apply all the neighbourhoods until no improvement is found,
where we regard the solution as being a local optimum. In line 11, if the so-
lution is still not feasible, we then increase the coefficients in the objective
function of all the dc variables, with the exception of the BR2 (break 2 con-
straints), where we increase the coefficients of the bis variables in the objective

function if b̂is = 1. In lines 12-13 we check whether the solution is feasible.
For any dc variables that take a value of 0 but have a positive coefficient in

the objective function due to the previous iterations, we decrease their weight
by taking into account the slack of the corresponding constraint in the model.
If there is a positive slack then we decrease the current weight by one unit.

4.3 Optimising with soft constraints

In this stage we consider the full ILP model (with both hard and soft con-
straints), and the input is the final solution obtained by algorithm described
in Section 4.2. A pseudo-code is provided in Algorithm 2. We first reset all the
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Scheduling Double Round-Robin Sports Tournaments 11

Algorithm 1 VNS (Hard only)

1: procedure VNS(n1, n2) . n1 and n2 do not change in this part
2: Sol0 ← Compute initial solution (with objective function F0)
3: i← 0
4: while Improvement do
5: i← i + 1
6: Soli ← Sol0
7: Apply N1-N5 in Soli
8: if Improvement found then . with the current objective function being used
9: Update Soli

10: else
11: Change weights on the objective function

12: if Solution is feasible then
13: Stop and return feasible solution Soli

weights on the objective function as follows. The weight on the dc variables,
where c ∈ C̃ is given by the penalty of the constraints, and the weight of all
the other dc variables related to hard constraints is set to 100. We identified
that this value is sufficiently large to converge to better solutions without vio-
lating too many hard constraints, which may lead to difficulties on recovering
feasibility. However, this approach indeed allows to visit infeasible solutions
during the search process. Therefore, it is important to check that the solution
we check in line 10 of Algorithm 2 is indeed feasible.

We start with the objective function defined by the solution obtained by
the VNS (hard-only) algorithm, which corresponds to the actual penalty of
the solution. Next we apply the N1-N5 neighbourhoods until we obtain a local
optimum, at which stage we increase the two parameters of the algorithm, n1

and n2 (see Section 4.1) by one, until Gurobi cannot solve the model efficiently.
In some instances where there are not many constraints, the resulting ILP
models are easier to solve and, therefore, higher values for n1 and n2 are
explored (up to n1 = 30 and n2 = 14 in the best cases). For the larger or
more complex instances resulting in more challenging ILPs, the model becomes
intractable with n1 = 18 and n2 = 8.

After performing some computational experiments and exploring other
strategies, we found that developing a multi-start algorithm is able to pro-
duce the best quality solutions. We execute multiple runs (ns) with the same
initial solution (by introducing randomness in N1-N3) or by different initial
solutions obtained by the VNS (hard-only) algorithm.

5 Computational experiments

For the computational experiments we have used 2.6GHz Intel Sandybridge
processors, and each run was performed by 4 CPUs with 16GB of memory.
We have used Gurobi (version 9.0) to solve the ILP models and we run the
algorithm three times with 30, 60 and 600 second per model. In stage 1 of
the algorithm (VNS), we run the algorithm until a feasible solution is found.
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12 Carlos Lamas-Fernandez et al.

Algorithm 2 VND (hard + soft) - multistart

1: procedure VND(ns) . ns is the number of muti-start runs
2: for i = 1 . . . , ns do
3: Soli ← One random solution obtained from VNS (Hard only) (Algorithm 1).
4: n1 = 5 and n2 = 4
5: exploring = True
6: while exploring do
7: Apply N1-N5 in Soli
8: if Improvement found then . Objective function does not change
9: Update Soli

10: if best solution improved then
11: Update best solution

12: n1 = n1 + 1
13: if Gurobi cannot find feasible solution of the resulting ILP then
14: n1 = 5
15: n2 = n2 + 1
16: if Gurobi cannot find feasible solution of the resulting ILP then
17: exploring = False

18: Return best solution

At this stage we also considered adding the soft BR2 (break 2) constraints in
order to begin stage 2 with a solution that already has a low number of breaks.

The computation time needed to find a feasible solution is shown in the first
three columns of Table 1. It is worth highlighting that for almost all instances
it is relatively quick to find a feasible solution, although in some instances it
is more challenging and many iterations of the VNS are required to find a
feasible solution, especially the instance Middle 2.

In stage 2 of the algorithm (Section 4.3), for each run of the algorithm
we set ns = 60 (multi-start runs), and we initially set n1 = 8 and n2 = 6.
The computation time of one single run of the algorithm strongly depends on
the instance that we are solving, but the largest amount of time on a single
run was up to 6 days. Our best solutions obtained are reported in Table 1.
The instances solved are divided into three sets of 15 instances each (Early,
Middle and Late), which were released at different times during the ITC2021
competition.
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Table 1 Best results obtained by the proposed algorithm (VNS+VND) for the ITC2021
instances. The second column (TTF) represents the time to achieve feasibility (in hours)
and the third column (ITC2021) presents the best solution known for the instance at the
end of the competition. The last column presents the gap from the best VNS+VND solution
to the best known.

Instance TTF (h) VNS+VND ITC2021 Gap
Early

1 < 1 362 362 0%
2 < 1 222 160 28%
3 < 1 1052 1012 4%
4 < 24 536 512 4%
5 < 24 3127 3127 0%
6 < 1 3714 3352 10%
7 < 1 4763 4763 0%
8 < 1 1114 1114 0%
9 < 1 108 108 0%
10 < 72 3400 3400 0%
11 < 1 4436 4436 0%
12 < 1 510 380 25%
13 < 1 121 121 0%
14 < 1 47 4 91%
15 < 1 3368 3368 0%

Middle
1 < 24 5177 5177 0%
2 > 100 7381 7381 0%
3 < 24 9800 9701 1%
4 < 1 7 7 0%
5 < 1 494 413 16%
6 < 1 1275 1125 12%
7 < 1 2049 1784 13%
8 < 1 129 129 0%
9 < 1 450 450 0%
10 < 1 1250 1250 0%
11 < 1 2608 2511 4%
12 < 1 923 911 1%
13 < 1 282 253 10%
14 < 1 1323 1172 11%
15 < 1 965 495 49%

Late
1 < 1 1969 1969 0%
2 < 1 5400 5400 0%
3 < 1 2369 2369 0%
4 < 1 0 0 -
5 < 3 2218 1939 13%
6 < 1 923 923 0%
7 < 1 1652 1558 6%
8 < 1 934 934 0%
9 < 1 563 563 0%
10 < 3 2031 1988 2%
11 < 1 226 207 8%
12 < 1 3912 3689 6%
13 < 1 2110 1820 14%
14 < 1 1363 1206 12%
15 < 1 40 20 50%
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The proposed algorithm obtained the best results in 22 out of 45 instances
by the end of competition, and in further 7 instances the best known result is
within 6% of the solution obtained by the proposed algorithm.

6 Concluding remarks

In this study, we propose a novel matheuristic algorithm having two stages to
solve the DRRSSP. In the first stage, we address the feasibility problem by
using a VNS framework, where a second stage we optimizes the soft constraint
violations by using a multi-start algorithm with a VND. Both the VNS and
the VND use the same neighbourhood structure that combines five different
neighbourhoods. The results obtained shows that both stages of the algorithm
perform well, being able to prove optimality in one instance (Late 4, with an
objective value of 0) and finding a feasible solution in all 45 instances of the
ITC2021 challenge competition.
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