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1 Introduction

We outline a model and method for solving the International Timetabling
Competition on Sports Timetabling (Van Bulck et al., 2021b). Our algorithm
generates a starting solution, and improves it using an adaptive large neigh-
bourhood search (ALNS) using several neighbourhood types. Each neighbour-
hood subproblem is solved using integer programming, classifying the over-
all approach as a matheuristic. Similar methods have been effective on other
classes of constrained scheduling problems (e.g. Pisinger and Røpke, 2007;
Lindahl et al., 2018).

During the competition we generated 3 best-known solutions, and another
17 best-known solutions afterwards by improving other contestants solutions.

2 Modelling & Solution Approach

Our approach initially defines a monolithic integer program (IP) model which
fully encodes the ITC2021 problem specification. The primary decision vari-
ables define the binary choice of assignment of a single game (ordered pair of
teams) to a slot in the double round robin.

These variables are sufficient to prescribe a solution, however to enable
modelling of the specified hard and soft constraints, we use two sets of auxiliary
variables. The first set represents whether a break has occurred for each team,
in each slot, for each game mode. The second set represents the magnitude
of violation for each soft constraint, which are used to define the objective
function.
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2 Antony E. Phillips et al.

Neighbourhood Description

Slots Game-slot variables are free within a subset of slots
Teams Game-slot variables are free if both teams are within a subset of teams
Teams+ Game-slot variables are free if either team is within a subset of teams
Order Game-slot variables are free if this game or the reversed game is as-

signed to this slot in the current solution

Table 1 Neighbourhood types

This simple formulation is unlike most mathematical programs in the
sports timetabling literature, which tend to use a multi-stage approach (Ras-
mussen and Trick, 2008). For example, an initial stage to select allowable
home-away patterns, and a latter stage to build the full schedule.

For the instances in ITC2021, the monolithic IP we define can easily be
constructed in memory, with the largest instance (Early 15) represented with
28,171 variables, 23,842 constraints and 11.1 million nonzeros. However, the
problem structure makes this model intractable to solve to optimality.

2.1 Starting solution

To find a starting solution, we first attempt to solve the monolithic IP (termi-
nating after 8 hours), which may find a feasible solution. If not, we construct
a starting solution using a “canonical factorization” from de Werra (1981),
which minimises the number of breaks. This solution is guaranteed to sat-
isfy the challenging “BR2” constraint (maximum total number of breaks), but
is likely to violate other hard constraints and thus not be feasible. Using the
number of hard constraint violations as an objective function to be minimised,
we then employ a hill climbing heuristic. Specifically we try all pairs of swaps
between teams and slots (e.g. every assigned game for two teams are swapped).

2.2 Improvement Phase

From a starting solution, we iteratively apply an adaptive large neighbourhood
search (ALNS), where part of the solution is allowed to be modified while the
rest remains fixed. An IP is solved within this neighbourhood subproblem
which aims to minimise the number of hard or soft constraint violations, de-
pending whether the current solution is infeasible or feasible respectively. The
types of neighbourhood are shown in Table 1.

The selection of which neighbourhood type to use is treated as a multi-
armed bandit problem, and addressed using the Upper Confidence Bound
(UCB) method. Based on the results from all previous iterations on this
instance, the next neighbourhood type (“arm”) is chosen as that with the
greatest optimistic upper bound on its expected probability of improving the
solution (“reward”); see formula (2.10) from Sutton and Barto (2018). This
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An adaptive large neighbourhood search matheuristic for ITC2021 3

balances between exploring options and exploiting those which have performed
well in previous iterations.

The size of the neighbourhood is also adaptive, based on the outcome
in the last iteration for this neighbourhood type. Except for the fixed-size
“Order” neighbourhood, the size is increased or decreased by 1 unit (i.e. a slot
or team) if the last iteration was solved within 5 minutes or if it terminated
on a 30 minute time limit respectively. Searching a larger number of small
neighbourhoods was found to be more effective than the opposite.

Within each iteration, the specific subset of slots or teams chosen for the
neighbourhood is determined based on a randomly selected unsatisfied con-
straint (hard or soft). This allows the neighbourhood to focus on assignments
which contribute to the total penalty of the solution. If the constraint is defined
over more slots or teams than required for the neighbourhood, a random sub-
set are chosen. In the converse situation, additional slots or teams are selected
at random.

2.3 Results

To solve instances in parallel, we used Google Cloud Platform both to run
our algorithm (Compute Engine virtual machines), and to maintain an online
database of solutions and attempts (BigQuery).

Over several days, we used 4 “c2-standard-30” virtual machine instances,
for a total of 10,686 vCPU hours (Google Cloud, 2021). Therefore, each of the
45 competition instances received an average of 237 vCPU hours, terminating
on the total time elapsed. This is approximately similar to 1-2 days of execution
on a standard consumer CPU (with 4 to 8 physical cores). All IPs were solved
using Gurobi 9.1.1, with the “MIPFocus” parameter set to 1.

Our full set of results are shown in Table 2. The objective values of our
best solutions during the competition are given in column “Us-ITC”, and the
best solutions from all teams in column “Best-ITC”. We were able to find a
feasible solution to 37 out of 45 instances, of which 3 solutions were the best-
known from all submissions (as marked with an asterisk). However, most of
our solutions have a notably higher objective than the best-known solutions.

After the competition, we tested the ALNS algorithm on the best-known
solutions from all teams, each for 4 hours on a consumer CPU (AMD Ryzen
5900HX). In 17 cases we were able to generate a new best-known solution,
with objective shown in column “Us-Post” of Table 2. These solutions are
available on the competition website (Van Bulck et al., 2021a). Of the 17
highly optimised starting solutions, 12 were provided by Team Saturn, 3 by
Team UoS, 1 by Team Udine and 1 by Team GOAL.

Finally, Figure 1 demonstrates the ALNS algorithm on the ‘Early 15’ in-
stance. Starting from a feasible solution obtained by solving the monolithic
model (with objective of 7,504), the ALNS algorithm reduces the objective
value to 4,667 over 1100 iterations. Only the 91 successful iterations and the
associated neighbourhood type are shown.
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4 Antony E. Phillips et al.

Instance Objective
Us-ITC Best-ITC Us-Post

Early 1 666 362
Early 2 379 160 145
Early 3 1171 1012 992
Early 4 – 512 507
Early 5 – 3127
Early 6 4821 3352 3325
Early 7 7208 4763
Early 8 1191 1114 1074
Early 9 447 108
Early 10 – 3400
Early 11 6713 4436 4426
Early 12 925 380
Early 13 382 121
Early 14 106 4
Early 15 4667 3368 3362
Middle 1 – 5177
Middle 2 – 7381
Middle 3 11235 9701
Middle 4 7* 7
Middle 5 681 413
Middle 6 2026 1125 1120
Middle 7 3317 1784 1783
Middle 8 277 129
Middle 9 1315 450
Middle 10 2370 1250
Middle 11 3143 2511 2446
Middle 12 911* 911
Middle 13 1044 253 252
Middle 14 1704 1172
Middle 15 1401 495 485
Late 1 2406 1969 1922
Late 2 – 5400
Late 3 2900 2369
Late 4 0* 0
Late 5 – 1939 1923
Late 6 1310 923
Late 7 2805 1558
Late 8 1252 934
Late 9 1343 563
Late 10 – 1988 1945
Late 11 376 207 202
Late 12 5542 3689 3428
Late 13 3099 1820
Late 14 1714 1206
Late 15 80 20

Table 2 Full Results Fig. 1 ALNS Iterations for Early 15
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3 Conclusion

Our algorithm performed adequately given its relative simplicity and modest
execution time. The method to generate a starting solution was particularly
simple, and consequently often could not provide a feasible solution to the
ALNS algorithm. Notably, the 8 unsolved instances all include a phased tour-
nament and a hard “BR2” constraint, which add dependencies across the entire
solution and are hard to control with the defined ALNS neighbourhood types.

However, when operating on feasible solutions, the ALNS method was able
to rapidly improve most solutions an appreciable amount. This led to us find-
ing 3 best-known solutions during the competition, and 17 more after the
competition, by improving the solutions from other teams.

The ALNS algorithm could likely be further sped up, as less than 10%
of neighbourhoods found an improved solution. This suggests an opportunity
for a more targeted choice of neighbourhoods, whether derived analytically or
with online learning. The ALNS method could additionally be hybridized with
the conventional decomposition approaches in sports timetabling, which add
structured home-away patterns and multiple starting solutions.
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