
A Hybrid Model to Find Schedules for Double
Round Robin Tournaments With Side Constraints

Jasper van Doornmalen · Christopher
Hojny · Roel Lambers · Frits Spieksma

Received: date / Accepted: date

Abstract We describe a method for finding solutions to the instances pro-
vided by the International Timetabling Competition, edition 2021.

Keywords Sport scheduling · Mixed Integer Programming · Matheuristics ·
Fix and Optimise · International Timetabling Competition 2021

1 Introduction

The International Timetabling Competition (ITC) is a competition where par-
ticipants are asked to solve instances of a particular type of timetabling prob-
lems. In the 2021 edition [4], the instances originate from the domain of sport
scheduling. The aim of this note is to describe the method that we have used
to find solutions for the instances provided by the 2021 edition of the ITC.

There are many types of scheduling problems within the realm of sport
scheduling, however the ITC focused solely on the scheduling of so-called Dou-
ble Round Robin (DRR) tournaments. In a DRR tournament each team plays
each other team twice, once at home and once away. The matches are dis-
tributed over different rounds or slots, such that each team plays at most one
match per round. When the number of teams (N) is even, it is possible to
schedule a DRR using 2N − 2 rounds, implying that each team plays exactly
once in each round. The resulting schedule is then called compact, as it uses
the minimum number of rounds needed to schedule all the matches. A compact
DRR is a very popular format used in many sports; for instance, most national
soccer leagues are organised as a compact DRR. As the instances provided by

Eindhoven University of Technology
Combinatorial Optimization Group
PO Box 513
5600 MB Eindhoven, The Netherlands
E-mail: {m.j.v.doornmalen, c.hojny, r.lambers, f.c.r.spieksma}@tue.nl

412

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box

2 Jasper van Doornmalen et al.

the ITC ask for compact DRRs, we focus here exclusively on finding compact
schedules.

Literature Review

There is a growing amount of papers dealing with all kinds of problems in
sport scheduling. Results on the complexity of finding round robin sched-
ules can be traced back to Easton [5], see also Briskorn et al. [3], and Van
Bulck and Goossens [12]. Integer programming formulations have been stud-
ied, among others, in Briskorn and Drexl [2]. For more general information
concerning sport scheduling, we refer to well-known surveys by Rasmussen and
Trick [11] and Kendall et al. [8]; a bibliography is maintained by Knust [9].
When scheduling a league in practice, many different real-life aspects may
turn up, see Goossens and Spieksma [6] for an overview devoted to European
soccer leagues. The instances provided by the ITC feature many practical
side-constraints; in fact, we discuss the properties of a schedule as required by
the 2021 ITC in Section 2, and we call the problem of finding such a schedule
ITC-DRR. In Section 3 we describe our method, and in Section 4 we give the
results.

2 Requirements of a ITC-DRR Schedule

Ultimately, the quality of a schedule depends on the preferences of the organ-
isers. It is a fact, however, that there are reoccurring themes that often need to
be taken into account when devising a high-quality compact DRR schedule. In
Section 2.1, we specify our notation and phrase the problem, and in Section 2.2
we discuss the type of hard and soft constraints present in the instances of the
ITC.

2.1 Notation

We use T for the set of teams, S for the set of rounds; thus we have |T | = N
and |S| = 2N − 2. A match is an ordered pair (i, j) ∈ T × T , i 6= j, where
team i plays Home and j plays Away. For each match, there should be a round
r ∈ S where this specific match occurs and in each r ∈ S, team i ∈ T should
play exactly one match.

All other constraints that occur, tend to be specific for a team or a subset of
teams, and applicable to a subset of the rounds, see Section 2.2. Constraints are
either so called hard constraints, or are soft constraints. The hard constraints
need to be satisfied; for the soft constraints, a penalty for every (unit of)
violation is given. The objective is to find a schedule that satisfies all the hard
constraints and minimises the total sum of the penalties induced by the soft
constraints; we refer to this problem as ITC-DRR.

413

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box

Title Suppressed Due to Excessive Length 3

2.2 On the variety of constraints in the ITC instances

We describe different types of constraints that are present in the ITC instances.

2.2.1 The type of DRR

It is quite natural to organise the DRR such that each pair of teams meets
once in the first half of the schedule (i.e., in the first N − 1 rounds), and
once in the second half of the schedule (i.e., in the last N − 1 rounds); this is
called phased. A phased competition can be regarded as two consecutive Single
Round Robins (SRR).

Apart from being phased or not, most competitions require that the rounds
where the match (i, j) and its return (j, i) for i, j ∈ T is played, are separated
by a given minimum number of rounds. When this minimum number of rounds
equals N−1 for all the matches, the second half of the season is the complement
of the first half of the season, and the resulting DRR is called mirrored.

2.2.2 Constraints concerning Home Away Patterns (HAPs)

Consider, for a given team, the series of 2N − 2 home and away matches: we
call the resulting pattern the Home Away Pattern (or HAP) of that team.
When a team plays two matches in consecutive rounds either both home or
both away, this is called a break. In many applications, breaks are seen as
unfavourable for the team and their occurrence should be minimised.

More generally, it is quite common to demand that the home-away pattern
according to which a team plays is balanced for certain sets of rounds. For
instance, it is very common to demand that each team starts its first two
rounds with a home match and an away match, and also plays in its last two
(and even four) matches once at home and once away (twice at home and
twice away). In addition, even when the DRR is not phased, one can demand
that after N − 1 rounds the number of home matches played by each team is
either bN−12 c or dN−12 e.

To ensure favourable break-patterns, schedulers often use a so-called First-
Break-Then-Schedule approach, which goes back to Nemhauser and Trick [10].
In such an approach, first the home away patterns are fixed, and then the
matches are determined consistent with the given HAPs.

2.2.3 Constraints concerning matches

In practice, not all matches are treated equally: matches between top teams
are subject to much more attention than other matches. As a consequence,
finding the appropriate round for such a match can be an important factor in
the quality of a schedule. For instance, many leagues feature so-called Super
Sundays: rounds where 4 or 6 top teams play matches amongst them. Find-
ing the ideal round for such a Super Sunday is important. In addition, some
matches should not be played in certain rounds: a match between top teams

414

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box

4 Jasper van Doornmalen et al.

should not be played in the last round (for risk of not being relevant anymore).
Further, one can imagine, in the context of soccer leagues, that qualification
for other tournaments have an impact on the rounds where particular matches
should be avoided.

It is also very common to strive for a balance in the strength of consecutive
opponents, especially in the first 4 or 6 rounds. Indeed, it is considered quite
unfavourable to have to play against 3 top teams in a row, whether or not at
home or away.

3 Solution process

In principle, the ITC-DRR problem can be modelled as a compact mixed-
integer program (MIP), which can be solved by a black-box MIP solver. In
practice, however, state-of-the-art solvers fail to solve instances even with a
small number of teams within weeks. For this reason, we suggest a heuristic
approach to find solutions satisfying all hard constraints of ITC-DRR and that
aims to minimise the violation of soft constraints. Our approach consists of
three phases:

1. constructing a schedule S for a compact phased double-round robin tour-
nament;

2. turning S into a schedule S′ adhering to all hard constraints;
3. starting from S′, searching for a schedule that violates less soft constraints

while still satisfying all hard constraints.

We use an explicit rule to construct the initial schedule S in Phase 1, whereas
Phases 2 and 3 make use of procedure that alternates between solving a MIP
and using a local search algorithm to find better solutions. In the following,
we describe the details of these three steps.

3.1 Finding an Initial Schedule

To construct the initial schedule S, we use the circle method [1] to create
a schedule for a compact single-round robin tournament. This tournament
is then duplicated where the home-away status of each match is flipped. By
combining these two single-round robin tournaments a compact and phased
double-round robin tournament is found.

Note that S is only guaranteed to satisfy the compactness constraint of
ITC-DRR. If S violates some hard constraint, we enter Phase 2; otherwise, we
directly continue with Phase 3.

3.2 Finding Improving Schedules

In both Phase 2 and 3, our aim is to find schedules that improve on the
initial schedule S or S′, respectively. To quantify the quality of a solution,

415

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box

Title Suppressed Due to Excessive Length 5

we introduce a function f that measures the violation of hard constraints
(Phase 2) or soft constraints (Phase 3) by a schedule. Moreover, violations of
hard constraints are not permitted in Phase 3. Our goal is to find a schedule
that minimises the value of f . As mentioned above, we search for such a
schedule by an alternating procedure whose components are described next.

3.2.1 Local Search

Januario et al. [7] discuss how schedules for compact single-round robin tour-
naments can be encoded in an edge-coloured complete undirected graph. The
vertices of the complete graph correspond to the teams and edges encode pos-
sible matches. Rounds of the matches are distinguished by assigning each edge
a colour, i.e. the edges of each colour class form a perfect matching.

To find better schedules, they discuss a local search algorithm on such
colourings. The idea of this algorithm is that one schedule can be turned
into another by the following procedure: Starting with two vertices (teams)
i, j ∈ T one can select a set of colours (rounds) c0, c1, . . . , cp−1 ∈ S that induce
p disjoint paths C0, . . . , Cp−1 where path Ck is a path from i to j alternating
over the coloured edges ck and ck+1 (mod p). Then, one can re-colour the edges
by interchanging the alternating colours on each path. If the paths are disjoint,
then the obtained edge-coloured graph is again a valid encoding for a schedule.

The concept of this neighbourhood for single-round robin tournaments can
be generalised to double-round robin tournaments by replacing every edge in
the graph by two anti-parallel arcs that can be coloured independently. That
gives an arc-coloured complete directed graph, where the vertices correspond
to the teams and the arc colours correspond to the rounds. The set of disjoint
paths in the single-round robin case now translates to a set of arc-disjoint
paths where it is permitted to traverse arcs in either direction, see Figure 1
for an example.

In the local search part of our procedure, we iterate over the possible
disjoint paths, starting by checking small neighbourhoods: the sets of colours
(rounds) of size 2. Once all possibilities are checked for all pairs of teams,
this number of colours is increased. In each iteration we check the change of
the objective, and based on this change we decide to accept the solution and
restart, or to reject the solution and continue to the next iteration. We do
this in a simulated annealing fashion, i.e. we also allow to continue with worse
solutions with a certain probability. To ensure feasibility in Phase 3, solutions
that violate hard constraints are never accepted. Finally, we terminate the
procedure after a certain time limit and continue with the MIP approach.

3.2.2 MIP Approach

To improve on the schedule found by local search, we use a MIP model. Its main
variables are xi,j,r ∈ {0, 1}, where i, j ∈ T (i 6= j) and r ∈ S. This variable
indicates that match (i, j) takes place in round r. The variables hbi,r, abi,r ∈
{0, 1} represent the home-break or away-break status of team i on slot r ∈ S,

416

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box

6 Jasper van Doornmalen et al.

1

2

3

4

5

6

(a) Initial graph.

1

2

3

4

5

6

(b) After re-colouring.

Fig. 1: An example of two neighbouring solutions using the colour-cycle
(purple,blue, black) between team 3 and 6. The alternating paths are: purple–
blue: (3, 5), (6, 5); blue–black: (2, 3), (6, 2); and black–purple: (4, 3), (4, 6).

respectively. These are used to model the constraints related to breaks. For
soft constraint class c ∈ C, we denote by dc,i the penality of violating the i-
th constraint in class c. The constraint penalty is denoted by pc, and the
model objective is to minimise the total penalty given by

∑
c∈C

∑
i∈c pcdc,i.

Each constraint is modelled by a set of linear constraints in a straightforward
fashion, such that the feasible region matches the description of the constraint
classes in the competition.

We use a fix-and-optimise matheuristic where we fix a (uniformly) ran-
dom subset of rounds to the current schedule, and optimise for the remaining
rounds. Given an initial feasible schedule, a random subset Ŝ ⊆ S is selected.
Next, the variables xijr for r ∈ S \ Ŝ are fixed to the value corresponding to
the initial solution, and the model is optimised. We have two parameters that
change depending on the behaviour of the model: A time limit and a sample
size. The same time limit parameter is used in the local search approach to
ensure that the time spent in both approaches is about equal. If the time limit
is reached while no improved solution is found, we increase the time limit and
possibly reduce the sample size. If an optimal solution is found within the time
limit, the random sample size is increased and the time limit is slightly de-
creased. Moreover, a solution limit is imposed. If multiple improved solutions
are found within the time limit, we stop the optimisation and continue with
another sample of rounds. In general, if after solving the MIP an improvement
is found, we restart the MIP-approach with a different sample. Otherwise we
go back to local search using the best schedule found so far as initialisation.

417

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box

Title Suppressed Due to Excessive Length 7

4 Computational Experience

For the implementation we have used Python 3.8. The MIPs are solved using
Gurobi 9.1.0 with the gurobipy package. Table 1 compares the result of our
solution approach (LS+MIP) with the approach where the compact MIP of
Section 3.2.2 (MIP) is solved. The test set comprises the early test instances
provided by [4]. Each instance has a time limit of 24 hours. A dash denotes
that no feasible solution is found within the time limit. Observe that in most
cases the solution process with local search finds a better primal solution
than the compact MIP formulation. These results are found by using 4 cores
on machines with an Intel Xeon Platinum 8260 with 42.7GB of RAM per
instance.

Table 1: Computational results for the early instances comparing our method
(LS+MIP) to solving the compact mixed-integer programming formulation
(MIP) with a time limit of 24 hours per instance. Shown are the best primal
solutions, dual bounds, the time per phase of LS+MIP and the number of
iterations in LS and MIP.

LS+MIP MIP

Phase 2 Phase 3

Iterations Iterations

Instance Time(s) LS MIP Time(s) LS MIP Primal Primal Dual

Early 1 822 6 15 85578 72 75 619 1588 1.00
Early 2 453 4 12 85947 57 94 369 606 0.00
Early 3 490 4 15 85910 50 69 1212 1701 55.19
Early 4 86400 60 98 – – – – – 0.00
Early 5 86400 65 101 – – – – – 258.88
Early 6 46127 60 82 40273 35 60 4682 – 633.64
Early 7 2049 12 25 84351 51 89 7306 10153 1271.64
Early 8 10 1 0 86390 60 91 1588 1615 210.40
Early 9 54 1 0 86346 82 121 443 206 0.00
Early 10 86400 50 79 – – – – – 319.77
Early 11 1647 17 26 84753 61 94 6772 10841 329.43
Early 12 61723 36 77 24677 31 41 1130 1850 0.00
Early 13 525 4 15 85875 53 81 372 498 2.00
Early 14 76 1 5 86324 54 114 24 42 1.00
Early 15 577 5 13 85823 59 78 4779 6021 514.48

References

1. Anderson, I.: Combinatorial designs and tournaments. 6. Oxford University Press (1997)
2. Briskorn, D., Drexl, A.: IP models for round robin tournaments. Computers & Opera-

tions Research 36(3), 837–852 (2009)
3. Briskorn, D., Drexl, A., Spieksma, F.C.R.: Round robin tournaments and three index

assignments. 4OR 8(4), 365–374 (2010)
4. van Bulck, D., Goossens, D., Beliën, J., Davari, M.: The fifth international timetabling

competition (ITC 2021): Sports timetabling. In: Proceedings of MathSport International
2021 Conference, MathSport, pp. 117–122 (2021)

418

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box

8 Jasper van Doornmalen et al.

5. Easton, K.K.: Using integer programming and constraint programming to solve sports
scheduling problems. Ph.D. thesis, Georgia Institute of Technology (2003)

6. Goossens, D.R., Spieksma, F.C.R.: Soccer schedules in europe: an overview. Journal of
scheduling 15(5), 641–651 (2012)

7. Januario, T., Urrutia, S., Ribeiro, C.C., De Werra, D.: Edge coloring: A natural model
for sports scheduling. European Journal of Operational Research 254(1), 1–8 (2016)

8. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: An annotated
bibliography. Computers & Operations Research 37(1), 1–19 (2010)

9. Knust, S.: Classification of literature on sports scheduling. http://www.inf.uos.de/

knust/sportssched/sportlit_class/. Accessed: June 2021
10. Nemhauser, G.L., Trick, M.A.: Scheduling a major college basketball conference. Op-

erations research 46(1), 1–8 (1998)
11. Rasmussen, R.V., Trick, M.A.: Round robin scheduling–a survey. European Journal of

Operational Research 188(3), 617–636 (2008)
12. Van Bulck, D., Goossens, D.: On the complexity of pattern feasibility problems in time-

relaxed sports timetabling. Operations Research Letters 48(4), 452–459 (2020)

419

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

http://www.inf.uos.de/knust/sportssched/sportlit_class/
http://www.inf.uos.de/knust/sportssched/sportlit_class/
exo
Text Box

