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Abstract This article describes how we solved most instances of the ITC-
2021 as mixed-integer linear optimization problems (MILP). Our goal was to
contend in this competition without developing specialized algorithms, i.e.,
only using existing MILP solvers. This path was challenging but provided
feasible solutions for 40 out of 45 instances. Four of these instances where the
best solutions overall and two of them were even proven optimal.

First, we will present how we modeled the problems as MILPs, discussing
a few variations. Next, we describe how we combined methods to compute
better solutions increasingly by restarting different MILP solvers and running
the distributed massively parallel ParaXpress solver on HPC computers. Ad-
ditionally, we computed a particular objective function based on the analytic
center and either used this directly or with a newly developed variant of the
feasibility pump heuristic. In the end, we also added a simulating annealing
heuristic from the literature.
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2 Timo Berthold et al.

1 Introduction

Our goal was to participate in the International Timetabling Competition
on Sports Timetabling ITC-20211 without developing specialized algorithms,
i.e., only by using existing software and mainly working on the modeling and
combining existing MILP solving approaches. In the following, we will describe
how we came up with a MILP-based approach that made us reach the finals
without special-purpose algorithms.

The challenge in ITC-2021 is to construct time-constrained double round-
robin tournament with 16 to 20 teams for 45 different scenarios. There are hard
constraints, which have to be respected, and soft constraints, which might be
violated, but whose violation will result in a penalty. The goal is to minimize
the penalties, which makes it a classical optimization problem. For details,
see [19].

Section 2 will present the MILP formulation we used and its variants. In
Section 3 we will describe our basic approach of repeated restarts. Then, as
some of the instances – expectedly – turned out to be difficult, we looked
into existing approaches for finding feasible MILP solutions and combined
them in a new manner: The analytic center objective and the feasibility pump
heuristics, described in Section 4. One of our original ideas was to model the
problem instances as MILPs and then solve them on a supercomputer. We
sketch the setup and outcome in Section 5. Regarding the general state-of-the
art in sports timetabling, we refer to [12,13].

2 The MILP model

We modelled the problem as a mixed-integer linear program (MILP) as follows:
First we define the set of teams: T := {0, . . . , teams − 1}, the set of slots
S := {0, . . . , slots − 1}, and S0 := S \ {0}, and S9 := S \ {slots − 1}. The
sets of slots of the 1st and 2nd half of the season are represented as : S1 :=
{0, . . . , slots/2 − 1}, S2 := S \ S1. Correspondingly, the sets of matches are
called M := {(i, j) | i, j ∈ T, i 6= j}. We introduce binary variables xijs with
(i, j) ∈ M and s ∈ S. xijs = 1 indicating whether team i is playing home
against team j away during slot s.

The following constraints ensure the basic requirements: each match gets
assigned exactly one slot:

∑
s∈S xijs = 1 for all i, j ∈M ; in each slot the num-

ber of matches equals half the number of teams:
∑

i,j∈M xijs = 1/2|T | for all s ∈
S; and each team only plays once in each slot:

∑
t,j∈M xtjs +

∑
i,t∈M xits =

1 for all s ∈ S, t ∈ T . We also added the (redundant) equation
∑

s∈S,(i,j)∈M xijs =

1/2|S||T |. Furthermore, in case we have a phased tournament, each pair of
teams can only play once per half season:

∑
s∈S1

(xijs+xjis) = 1 for all (i, j) ∈
M, i < j.

Now we introduce binary variables bhts, and bats, t ∈ T , s ∈ S0 indicating
whether team t has a home or away break during slot s, respectively. Addition-

1 https://www.sportscheduling.ugent.be/ITC2021
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MILP. Try. Repeat. 3

ally, we need the following constraints:
∑

a∈T\{t} xta,s−1 +
∑

a∈T\{t} xta,s ≤
1 + bhts for all t ∈ T, s ∈ S0 and similarly for bats.

Next, we introduce inequalities to enforce the different types of constraints
that can appear in the instances. Please see [19] for the parameters of the par-
ticular constraints: min, max, intp ∈ N, teams ⊆ T , slots ⊆ S, meetings
⊆ T 2. For CA2, CA3, CA4, and BR1 we only show the mode="HA" case, for
the two cases the respective x-variables have to be removed accordingly. Note
that the violation counter v∗ ≥ 0 has to be fixed to zero in case of a hard
constraint. This gives rise to the following constraints:

– CA1(max):
∑

n∈T\{t} xtns ≤ max + vca1 for all t ∈ teams, s ∈ slots for
mode="H", and xnts in case mode="A".

– CA1(max):
∑

n∈T\{t} xtns ≤ max + vca1 for all t ∈ teams, s ∈ slots for
mode="H", and xnts in case mode="A".

– CA2(max,teams):
∑

s∈slots
∑

n∈teams2(xtns + xnts) ≤ max+ vca2 for all t ∈
teams.

– CA3(max,intp,teams):
∑

n∈teams2
∑

r∈{s−intp+1,...,s}(xtnr +xntr) ≤ max+

vca3s for all t ∈ teams, s ∈ S \ {0, . . . , intp− 2}.
– CA4(max,slots,teams1,teams2):

∑
(i,j)∈teams1×teams2,i 6=j(xijs + xjis) ≤

max + vca4s for all s ∈ slots.
– GA1(min,max,slots,meetings): min+ vga1n ≤

∑
s∈slots

∑
(i,j)∈meet xijs ≤

max + vga1.
– BR1(max,slots,teams):

∑
s∈slots(b

h
ts+bats) ≤ max+vba1 for all t ∈ teams.

– BR2(max,slots,teams):
∑

s∈slots
∑

t∈teams(b
h
ts + bats) ≤ max + vba2.

– FA2(intp,slots,teams):
∑

a,p∈T\{t}
∑

p∈{0,...,s} xtap = hts for all t ∈ T,

s ∈ S; his − hjs ≤ intp + vfa2ij and hjs − his ≤ intp + vfa2ij for all s ∈
slots, (i, j) ∈ teams2, i < j.

– SE1(min,teams): |
∑

s∈S((s+ 1)xijs− (s+ 1)xjis)| ≥ 1 + min+ vse1ij for all

(i, j) ∈ teams2, i < j.

We wrote a python program to convert the XML description of the ITC-
2021 instances into the above model formulated in the modeling language
Zimpl [9], which then can generate an LP or MPS file. Zimpl automatically
reformulates the absolute value needed for SE1 into an integer linear formula-
tion.

As an objective, we minimize the sum over all violation counters multiplied
with their respective penalty values. This objective function is precisely the
one computed by the validator of the ITC-2021.

Variations: We experimented (to a minimal extent) with some variations of
the above model. We added an objective cutoff with the objective value of the
best known solution so far to improve the location of the analytic center as
described in Section 4. As far as we can tell, it didn’t hurt.

We also experimented with adding parts or even all of the odd-set con-
straints to push up the lower bound or increase feasibility. Apart from the
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4 Timo Berthold et al.

LP solves getting slow due to the huge number of constraints, there was no
observable effect. Hence we discarded this approach quickly.

Another modeling variant we explored was to remove all soft constraints
to get a feasibility instance. We assumed that this might be useful to find
initial solutions, as due to the reduced number of constraints, we expected the
problems to solve faster. Unfortunately, the effect was not as pronounced as
we hoped for. We were only able to generate few initial solutions this way.

Furthermore, we also tried relaxing feasibility by changing the basic con-
straints from equal to one to less equal to one and penalized a non-sufficient
number of variables set to one in the objective. Also CPLEX [8] and Xpress [5]
offer such a procedure out-of-the-box, it is available via the feasopt and
repairinfeas command, respectively. This approach did not provide addi-
tional solutions.

We believe the last two ideas had little effect for the following reasons:
Most heuristics in a MILP solver are guided by the current LP solution. The
LP solution depends on the search tree, and the search tree is built depending
on the objective function. We observed that it was most effective to restart
the solution process frequently. Apparently, the objective was not guiding the
tree search towards better feasible solutions. Removing the objective as in the
two experiments above left the solver completely clueless in what direction to
go. Since the instances have comparatively few feasible solutions, hitting one
by chance proved to be unlikely.

Additionally, we observed that increasing the running time of an instance
only had a limited effect, i.e., only minor local improvements were happening,
and then the primal solution was stuck in a local optimum. A substantial
amount of change in the solution would be required for a major improvement
beyond this local optimum, i.e., a distant part of the search tree needed to be
explored. At the same time, MILP tree search algorithms tend to explore the
vicinity of the current search area first and avoid big jumps. Hence, restarting
worked reasonably well to overcome this behavior.

3 Repeated restarts and simulated annealing

In an initial step, we attempted to solve the problem formulation as given
in Section 2 using standard MILP solvers. We employed various solvers and
solver settings. This is for two reasons: Firstly, different solvers have different
strengths, so while some models might solve better with one solver, another
solver might be superior in another instance. Secondly, we aim at exploiting
the effect of performance variability [10].

Using our cluster facility, we ran each instance up to 25 times, using ei-
ther CPLEX, Gurobi [7], SCIP [1,6] or Xpress as a solver, using a time
limit of up to 12 hours. We varied the parameters between the runs, usu-
ally increasing the number of heuristic runs, setting an emphasis for feasi-
ble solutions, reducing the amount of cutting plane generation, etc. Further,
we altered the LP solver used for the initial relaxation. When available, we
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MILP. Try. Repeat. 5

used a solution polishing mode after a certain time. We also changed the
random seed parameter between runs. As an example, a typical setting for
Gurobi would be Seed=131313 TimeLimit=30000 ImproveStartTime=15000

Cuts=0 Method=3 Presolve=2 Heuristics=0.5

This way, we could gradually improve the best-known solution. Finally,
there were a few notoriously hard problems for which we needed better heuris-
tic methods to find a first feasible solution. We discuss this in the next section.

Note that we never used any specific settings for any of the instances. In
principle, they all went through the same loop of repeated solving by various
different solvers. The amount of loops depended on the solution quality. Simi-
larly, whether we applied heuristics methods to ignite the search depended on
whether our initial MILP searches came up with a feasible solution, but not
on any problem characteristics.

There were five instances where we failed to find any feasible solution de-
spite all efforts. After the contest, the ITC team provided us a sample solution
to one of these problems. With the knowledge of this initial solution, we were
immediately able to improve it.

Towards the end, we implemented a basic ad-hoc version of the simulating
annealing heuristics as described in [2]. Again, we used the best-known solution
as a start. The heuristic was able to improve this solution in several cases. We
used the resulting solution as starting solution for further MILP solver runs.

4 Analytic Center Objective and Feasibility Pump

Some of the strongest primal heuristics implemented inside MILP solvers are
improvement heuristics and depend on the knowledge of an initial solution
for the problem at hand. To a certain extent, this also holds for the main
branch-and-bound search.

In many cases, getting any feasible solution for a MILP problem is not too
hard; the complexity of the problem primarily lies in finding the optimal solu-
tion and, even more, proving its optimality. However, the ITC-2021 instances,
as typical for sport scheduling problems, are such that even getting an initial
feasible solution can be very challenging.

Therefore, we decided to employ two special, expensive start heuristic pro-
cedures. The first one is making use of an Analytic Center objective as de-
scribed in [4]. It replaces the objective function of a MILP by coefficients that
correspond to the analytic center of the polyhedron associated to the MILP.
Furthermore, we searched for initial solutions using a Feasibility Pump algo-
rithm, see, e.g. [3]. The variant we employed uses multiple integer reference
vectors in the projection step and is described in the thesis of Mexi [11]. Note
that both methods are available out-of-the-box for general MILPs. The Fea-
sibility Pump is available in source code on GitHub, while Analytic Center
Search can be run via a special setting of Xpress.

Using our MILP solver portfolio and the two described dedicated start
heuristics, we could find solutions for almost all ITC instances. The few with-
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6 Timo Berthold et al.

out a feasible solution and others for which we only saw a low-quality solution
were forward to the next step in our problem-solving scheme: massively parallel
MILP solving.

5 Massively parallel computations

As a third step, next to running a MILP solver portfolio and employing MILP
start heuristics, we utilized massive parallel MILP solving on a supercom-
puter. Therefore, we used the massively parallel MILP solver ParaXpress [17]
which has been developed by using Ubiquity Generator(UG) framework [14].
It builds on the FICO-Xpress Optimizer. From a massive parallelization point
of view, the latest version of ParaXpress has almost the same features as that
of ParaSCIP [16].

We ran ParaXpress on two HLRN IV supercomputers, Lisa and Emmy. In
HLRN IV, each compute node employs two sockets of an Intel Xeon Platinum
Processor 9242 and 362 GB of Memory, and each job uses 128 or 256 nodes
(12288 or 24576 cores, respectively). ParaXpress runs a single controller pro-
cess called LoadController and ten of thousands of solver processes that solve
(sub-)MILPs, each running on a single core. We executed each job with a time
limit of 12 hours. Jobs could be interrupted. Altogether, we spent more than
seven million core hours.

We show the principal procedure in Algorithm 1. Note that initially, the
set I contained selected instances that we thought were most suitable for a
supercomputing approach.

More precisely, we conducted a large scale racing [18,15], in which all
Solvers in ParaXpress run Xpress with different parameter settings indepen-
dently, but incumbent solutions found are shared to cut off search trees.

When there is a new incumbent solution for an instance, a new job to
restart the solving process with the incumbent solution is created. We submit-
ted almost all jobs with 12,287 Solvers; only a few ran with 24,576 Solvers. We
also tried to solve instances that could not find improved solutions with differ-
ent ways of running ParaXpress, such as a general parallel Branch-and-bound
method provided by UG, rather than a racing search. Note that ParaXpress
could solve some of the instances to proven optimality.

6 Results and Conclusion

Table 1 shows our final results. For two instances, we were able to prove
optimality of the solution. We could show that 36 of the 45 instances need
to violate some of the soft constraints, given that the MILP solver proved
a positive lower bound for them. Our results are not exhaustive. We mainly
stopped due to the deadline. However, the progress noticeably slowed down.

The catch of our approach is that it did not use any special purpose schedul-
ing algorithm. All methodology is general MILP technology, available indepen-
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Algorithm 1: Massive parallel computation procedure

Data: Let I be the set of pairs of instances and its incumbent solution (I,x).
Result: Updated I.

1 NoImprovedSol := ∅. // indicate instances with no improved solutions
2 SubmittedJob := ∅. // indicate instances for submitted jobs
3 while The due date has not reached do
4 while I 6= ∅ do
5 Select (I,x) and I := I \ (I,x).
6 Submit a job to solve I by ParaXpress with MIP start x
7 (Method: large scale racing).
8 SubmittedJob := SubmittedJob ∪ (I,x).

9 while terminated job exists do
10 Remove (I,x) from SubmittedJob := SubmittedJob \ (I,x) .
11 if Improved soluiton x∗ was found for (I,x) then
12 I := I ∪ (I,x∗)

13 else
14 NoImprovedSol := NoImprovedSol ∪ (I,x)

15 while Enough computing resources are available and NoImprovedSol 6= ∅ do
16 Select (I,x) and NoImprovedSol := NoImprovedSol \ (I,x).
17 Submit a job to solve I by ParaXpress with MIP start x
18 (Method: large scale parallel Branch-and-Bound).
19 SubmittedJob := SubmittedJob ∪ (I,x).

Table 1 Submitted results. Bold indicates the objective value is proven to be optimal. Italic
indicates a zero lower bound. For all other instances a positive lower bound was proven.

Instance no. Early Mid Late

01 804 — 2068
02 402 — 5525
03 1246 9700 3069
04 764 7 0
05 — 413 —
06 5506 2270 1212
07 6881 2991 2525
08 1409 174 1454
09 122 810 790
10 — 1813 2544
11 6843 3367 305
12 1025 1538 5669
13 360 1051 3877
14 25 1679 1433
15 4616 1614 40

dent of this work. Our main contribution was modeling the ITC-2021 problems
and the way to combine the different MILP-solving methods.

It became apparent that a dedicated scheduling heuristic to find initial
solutions would have been a helpful extension since finding an initial solution
was causing severe troubles for some of the models. Once we knew an initial
solution, the MILP technology could improve it to a satisfactory level in most
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8 Timo Berthold et al.

cases. We conclude that our methodology could probably be well combined
with more problem-specific approaches. It would be interesting to see how
well such an integrated approach performed in practice.

For our research, the competition showed direct impact, as it was a great
test case for a new version of the feasibility pump heuristic [11], which could
compute feasible solutions for 33 of the 45 instances. Furthermore, given that
the number of cores available on single machines is constantly increasing, it
might be worthwhile to incorporate a restart mechanism similar to the one we
scripted directly into the solvers. There are certain classes of problems where
this seems to work well. In a sense, this is similar to the idea of racing ramp-up,
which we employed for the massive parallel computations.

We will make the code to generate the MILP model instances publicly
available through the ITC organizers.
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