
Simulated Annealing with Penalization for
University Course Timetabling

Edon Gashi · Kadri Sylejmani · Adrian
Ymeri

Received: date / Accepted: date

1 Introduction

In this paper we present a simulated annealing algorithm for solving the
problem of University Course Timetabling as formulated in the International
Timetabling Competition (ITC) 2019 [6].

The presented algorithm is based on a modified version of simulated an-
nealing. It utilizes a suitable cooling function [5] and an adaptive evaluation
function [7], both of which have proven useful for normalizing the varying
characteristics of problem instances.

The algorithm searches both feasible and infeasible regions of the solution
space, where the latter is dealt with by using a combination of incremental
penalization and narrowed search on specific hard constraints.

The solver based on this algorithm has placed among the five finalists of
the International Timetabling Competition 2019.

2 Solution approach

Solution representation A given solution is always modeled to be complete.
This means that variables are always assigned to some value, even if their
configuration evaluates to an invalid solution. A solution is the list of all
variables Vi (where i = 1..n) and their values. A sample representation of

E. Gashi
University of Prishtina
E-mail: edon.gashi@uni-pr.edu

� K. Sylejmani
University of Prishtina
E-mail: kadri.sylejmani@uni-pr.edu

A. Ymeri
University of Prishtina
E-mail: adrian.ymeri@studentet.uni-pr.edu

361

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



2 Edon Gashi et al.

a given solution is S = {V1, V2, V3, ..., Vi, ..., Vn}, where the assignment of vari-
able Vi in a solution S is modeled to have three components CT - Class
Time, CR-Class Room or SE- Student Enrollment (i.e. V = {CT,CR, SE}),
where CT = {Class ID, Time slot}, CR = {Class ID, Room Index}, and
SE = {(Student ID, Course Index ), Class Chain Index}. Variable n repre-
sents the total number of all course configurations and the Class Chain Index
represents a particular assignment combination of a given course.

We maintain three separate penalties to determine the state of the solution:
hard penalty, class overflows, and soft penalty. Soft penalty is calculated using
the identical rules described by [6], and hard penalty is calculated as follows:

– A conflict between a pair of classes gives 1 hard penalty point.
– A time assignment conflicting with a room’s unavailable schedule gives 1

hard penalty point.
– An unsatisfied required constraint gives hard penalty points equal to the

soft penalty the constraint would give if it were not required.

Class overflows penalty is the sum of all over-enrollments on classes. We
maintain this as a separate penalty because it is not as constrained as hard
penalty and is easier to satisfy.

Neighborhood function A mutation is an operation that changes a single vari-
able. We hold two lists of possible mutations: feasible mutations and infeasible
mutations. Infeasible mutations are applied on solutions with non-zero hard
penalty, and they do not contain operations on students.

In concrete terms, a mutation is a single operation that either changes: (1)
the schedule of a class, (2) the room of a class, or (3) the class configuration
of a student attending a particular course.

The neighborhood operator has a 50% chance of performing a single mu-
tation (selected randomly from the possible mutations described above), and
a 50% chance of performing up to a maximum of three mutations, where the
number of mutations is selected at random with uniform probability.

Initial solution The initial solution S is deterministically assigned by giving
each variable an iterating natural number in the domain from 1 to 3, which
map the set of possible variable values V = {CT,CR, SE}, respectively. If
the attempted number exceeds the domain size, then the last number in the
domain is taken.

Cooling function The cooling schedule in Equation (1) is based on [5], where
the value of β has been assigned empirically. Because of the varying amount
of time it takes to solve different instances, a fixed restart temperature is used
once the hard penalty hits 0. In Equation (1), variable t represents the temper-
ature in the current iteration, whereas variable t’ represents the temperature
for the next iteration.

t′ =
t

1 + βt
(1)

362

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



Simulated Annealing with Penalization for University Course Timetabling 3

Evaluation function There are a few types of evaluation functions, depending
on the phase and context. In equations (2) and (3), ph stands for hard penalty,
ps for soft penalty, and pc for class overflows penalty, whereas c1 and c2 are
empirically defined constants. The function round2 means rounding to 2 digits
after the decimal separator. The worst soft penalty of a problem is calculated
statically by taking the worst case penalty of all constraints and assignments.

searchPenalty(s) =

{
c1ph + round2(c2pc + normalize(ps)), ph > 0

c2pc + normalize(ps), ph = 0
(2)

normalize(ps) =
ps

worst soft penalty of problem
(3)

The simulated annealing acceptance condition compares the difference be-
tween values of fstun [7], which is shown in Equation (4). The constant γ is
defined empirically, whereas f0 denotes the quality of the best solution. Thus,
the energy difference ∆E in simulated annealing is defined in Equation (5),
where s and s′ represent the current and next solution, respectively.

fstun(x) = 1− exp [−γ(f(x)− f0)] (4)

∆E(s′, s) = fstun (searchPenalty(s
′))− fstun (searchPenalty(s)) (5)

Particular class-time and class-room combinations can become penalized
over time. The modifiedPenalty function defined in Equation (6) is expressed
as the search penalty combined with the total sum of all penalties of present
features in a solution s.

modifiedPenalty(s, penalties) = searchPenalty(s) +

featuress∑
x

penaltiesx (6)

Penalization is performed after local timeouts for each feature by incre-
menting a constant multiplied by the hard penalty contribution of that par-
ticular feature.

Sometimes hard constraints persist for many timeouts. In such cases, we
pivot the solution by performing hill-climbing with a different penalization
function, as shown in Equation (7). A limited subset of persistent constraints
(focus) is taken and random walks are performed until the solution has reached
a sufficiently different shape.

focusedPenalty(s, focus) = fstun (searchPenalty(s)) +

focus∑
x

penalty(x) (7)

Algorithms 1 and 2 provide a simplified overview of the solver.

363

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



Algorithm 1 Simulated annealing with penalization
1: procedure Solve(initial solution)
2: t← initial temperature
3: penalties← initial penalties
4: best← initial solution
5: local best←∞
6: local timeout← 0
7: current← best
8: while stopping criteria not met do
9: t← cool(t)
10: candidate← mutate(current)
11: if candidate better than best then
12: best← candidate
13: end if
14: if searchPenalty(candidate) < local best then
15: local best← searchPenalty(candidate)
16: local timeout← 0
17: else
18: local timeout← local timeout+ 1
19: end if
20: if modifiedPenalty(candidate) < modifiedPenalty(current) then
21: current← candidate
22: else if accept(current, candidate, t) then
23: current← candidate
24: end if
25: if local timeout > limit then
26: local best←∞
27: local timeout← 0
28: t← restart temperature
29: persistent constraints← {constraints with age > age limit}
30: if infeasible(current) ∧ persistent constraints ̸= ∅ then
31: focused constraints← oldest 3 persistent constraints
32: current← ConstraintSearch(current, focused constraints)
33: else
34: penalties← scale(penalties)
35: end if
36: end if
37: end while
38: return best
39: end procedure

Algorithm 2 Focused search on particular constraints
1: procedure ConstraintSearch(solution, focused constraints)
2: timeout← 0
3: while timeout < timeout limit do
4: candidate← RandomWalk(solution, distance)
5: if focusedPenalty(candidate) < focusedPenalty(solution) then
6: solution← candidate
7: timeout← 0
8: else
9: timeout← timeout+ 1
10: end if
11: end while
12: return solution
13: end procedure

364

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



Simulated Annealing with Penalization for University Course Timetabling 5

3 Results and conclusion

The presented algorithm managed to solve all instances of the ITC2019 in
time limit of maximum 24 hours. It has won first place in both 1st and 2nd
milestone of the competition [6], and has placed third in the final round. In
addition, our solver has won the prize as the best approach in the open source
category.

In Table 1, we present the comparison results of our approach against the
results of four of the other finalists, namely Holem et al.[3], Rappos et al.
[1], Er-rahaimini [2] and Lemos et al. [4]. In addition, we have also included
the results presented by Müller (one of the organizers of the competition),
who, after the end of the competition, has published the results obtained by
the solver that is used by UniTime timetabling system. The presented results
of our approach (tagged as Edon et al.) are the best results that have been
achieved when running the solver for 24 hours for each instance. The results
in Table 1 show that our approach is outperformed, in all of the instances,
by the the approaches of Holem et al.[3] and Müller, whereas Rappos et al.[1]
performs better in 23 (out of 30) instances. Our approach performs better than
the approach of Rappos et al.[1] in seven instances, better than the approach
Er-rahaimini [2] in 19 instances, and better than the approach of Lemos et
al. [4] in 21 instances. In addition, the solutions of our solver have a gap
of less than 15% from the best known solutions in 5 (out of 30) instances.
Furthermore, the average gap from the best known solution for early, middle
and late chunks of instances are about 80%, 90% and 230%, respectively.

Overall, this model shows that it can solve complex and large instances with
distinct features in terms of number of courses, number of students, number
of rooms, as well as other distribution and special constraints.

References

1. Rappos Efstratios, iemard Eric, Stephan Robert, and Jean-Francois Heche. International
timetabling competition 2019: A mixed integer programming approach for solving uni-
versity timetabling problems. 2021.

2. Karim Er-rhaimini. Forest growth optimization for solving timetabling problems. 2021.
3. Dennis Søren Holm, Rasmus Ørnstrup Mikkelsen, Matias Sørensen, and Thomas Ja-

cob Riis Stidsen. A mip formulation of the international timetabling competition 2019
problem. 2020.

4. Alexandre Lemos, Pedro T. Monteiro, and Ines Lynce. Itc-2019: A maxsat approach to
solve university timetabling problems. 2021.

5. Miranda Lundy and Alistair Mees. Convergence of an annealing algorithm. Mathematical
programming, 34(1):111–124, 1986.

6. Tomáš Müller, Hana Rudová, Zuzana Müllerová, et al. University course timetabling
and international timetabling competition 2019. In Proceedings of 12th International
Conference on the Practice and Theory of Automated Timetabling (PATAT), pages 5–
31, 2018.

7. Wolfgang Wenzel and Kay Hamacher. Stochastic tunneling approach for global mini-
mization of complex potential energy landscapes. Physical Review Letters, 82(15):3003,
1999.

365

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



6 Edon Gashi et al.

Table 1 Presentation of the gap (in percentage) from the best known results

Instance name Best Holm et al.(%) Müller (%) Rappos et al.(%) Gashi et al.(%) Er-rhaimini(%) Lemos et al.(%)

agh-fis-spr17 3039 0 12.2 49.9 123.7 87.8 N/A
agh-ggis-spr17 34285 0 6.2 6.7 127.3 65.5 N/A
bet-fal17 289965 0 0.2 1.8 3.1 N/A 2.1
iku-fal17 18968 0 24.5 41.5 166.8 134.5 57.7
mary-spr17 14910 0 1.4 0.7 6.5 11.9 N/A
muni-fi-spr16 3756 0 7.5 2.3 33.2 38.6 N/A
muni-fsps-spr17 868 0 1.2 1.7 123.2 376.3 N/A
muni-pdf-spr16c 33724 0 18.3 11.1 72.5 130 59.5
pu-llr-spr17 10038 0 7.5 33.3 68.1 91.5 N/A
tg-fal17 4215 0 0 0 90.8 74.5 60.7
agh-ggos-spr17 2864 0 19.3 120.6 225.6 169.7 2684.3
agh-h-spr17 22175 0.05 0 17.9 13.1 16.1 N/A
lums-spr18 95 0 3.1 20 12.6 87.3 475.7
muni-fi-spr17 3825 0 3.6 12.1 22.6 42 372.6
muni-fsps-spr17c 2596 0 16 27.2 255 806 23714.2
muni-pdf-spr16 17208 0 16.8 41.3 132.8 125.6 1707.2
nbi-spr18 18014 0 3.7 5.7 47.2 68.2 177.1
pu-d5-spr17 15204 4.6 0 23.7 27.8 33.1 3.4
pu-proj-fal19 117425 25.7 0 377.9 102.6 49.9 9.32
yach-fal17 1074 15.3 0 71.6 60.8 196.1 N/A
agh-fal17 118038 24.5 0 N/A 20.8 55.9 29.8
bet-spr18 348524 0 0.2 3.3 1.5 3.4 7
iku-spr18 25868 0 39.1 41.9 76 232.3 174.2
lums-fal17 349 0 5.7 10.6 132.9 39.2 59.8
mary-fal18 4422 0 8.8 27.5 897.2 62.8 57
muni-fi-fal17 2999 0 8.2 26.5 38.7 57.1 60.7
muni-fspsx-fal17 10123 68.3 0 226 900.8 314.2 933.5
muni-pdfx-fal17 98373 13.7 0 53.9 53.9 61.8 95.1
pu-d9-fal19 39942 0 11.9 235.5 19 107.2 76.3
tg-spr18 12704 0 14.5 1.2 151.1 25.8 55

366

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box


	Introduction
	Solution approach
	Results and conclusion

