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Abstract �is summary article presents the mathematical programming approach used
to solve and optimize the problem instances of the International Timetabling Competition
2019. �e optimization problem was modeled as a mixed integer program which was solved
using traditional branch-and-cut methods. Several innovative elements enabled to achieve
good performance, such as the precalculation of several characteristics of the instances, the
aggregation of constraints and the e�cient use of auxiliary variables in the formulation.
�e computational implementation consisted of a �rst stage algorithm to obtain a feasible
solution and an iterative local search metaheuristic to improve the quality of the resulting
timetable. �e solutions produced using this algorithm resulted in a ranking of second
place in the competition.
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optimization

1 Introduction

�is extended abstract describes the method used to solve the timetabling problems of the
2019 International Timetabling Competition [1]. Overall, we were able to solve 29 out of
the 30 problem instances; the instance “agh-fal17” was not solved in time for the end of
the competition. �e mathematical modeling approach formulated the problem as a lin-
ear mixed integer program (MIP) and used techniques from large neighborhood search
[2],[3],[4] and metaheuristics [5] to improve the solution quality.

2 Model formulation

�e MIP formulation uses four sets of binary 0-1 variables, x, y, z and Z , representing the
class times, class rooms, student-class allocation and student-course con�guration alloca-
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tion respectively. �e indices of these variables are described in Table 1 and their values
uniquely represent a solution to a timetabling problem.

Variable Value
xc,t 1 if the class c takes place at time t, 0 otherwise
yc,r 1 if the class c takes place in room r, 0 otherwise
zs,c 1 if the student s is assigned to the class c, 0 otherwise
Zs,f 1 if the student s follows the course con�guration f , 0 otherwise

Table 1 Variables used in the formulation

�e binary variables are linked by a set of linear constraints representing the solution
requirements of the timetabling problems of the 2019 International Timetabling Competi-
tion. �e hard constraints must be satis�ed by any feasible solution and are summarized
in Table 2.

Constraint Meaning
C-1 Every class must be assigned a time
C-2 Every class must be assigned a room, where applicable
C-3 Every student must a�end exactly one class from each subpart of the selected

course con�guration for each course that he must a�end
C-4 For two classes with a parent-child relationship, if a class is assigned to a student

then the parent class must also be assigned
C-5 Every student must be assigned a course con�guration for every course that he follows
C-6 �e capacity of each class in terms of the number of students must be satis�ed
C-7 A room cannot be used when it is unavailable
C-8 Two classes cannot take place at the same time in the same room
C-9 Any hard distribution constraints must be satis�ed

Table 2 Constraints used in the formulation

�e �rst seven constraints are straightforward to formulate as linear inequalities using
the above decision variables. For example, C-1 is represented by the formula

∑
t xc,t = 1

for each class c; C-3 is expressed as
∑

c zs,c = Zs,f for each student s, where the sum is
over all classes c of one subpart of the course con�guration f , and C-5 is

∑
f Zs,f = 1 for

every student s. �e last two constraints C-8 and C-9 are modeled as inequalities of the
form:

xc1,t1 + yc1,r1 + xc2,t2 + yc2,r2 ≤ 3 (1)

for every combination of class times and rooms which leads to a violated constraint. �e
inequality (1) prevents all four terms from taking the value 1 and therefore disallows this
speci�c combination. �ere are however four types of hard constraints (namely, the special
MaxDays, MaxDayload, MaxBreaks and MaxBlock constraints) that cannot be represented
by inequalities of the form (1). �is is because these constraints cannot be expressed in
the form “for each pair of classes”; for these constraints an additional step is taken. Each
time a potential new solution is found we need to check that these special constraints are
satis�ed, and if they are not, reject the solution by adding the appropriate inequalities,
similar to (1) but with more terms, that forbid this combination of variables.

�e objective function consists of four linear terms which correspond to the four so-
lution quality criteria of the competition [1], namely the class time and room assignment
costs, so� distribution constraint costs and student con�icts. �e �rst two terms are simply
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the weighted sum of the x and y variables. For the costs associated with the so� distribu-
tion constraints, an auxiliary variable is introduced in (1) which speci�es if the constraint
is satis�ed or not, and the sum of these variables is used as the third term of the objective
function. A similar method is used for the student con�icts. An auxiliary variable is intro-
duced for every student and pair of classes he may follow, specifying whether a con�ict
exists or not. However, as the number of potential student con�icts can be very large, we
aggregate the penalties associated with every pair of classes into one equation (for all stu-
dents) by introducing an indicator variable which speci�es whether a student follows both
classes or not. Note that we are able to take into account both types of student con�ict:
where two classes overlap and when the travel time between the classes is insu�cient.

Several innovative techniques are used to deal with the very large number of con-
straints of the above formulation, which makes it possible to solve the competition in-
stances in a reasonable amount of time. �e e�ciency optimizations include:

– Extensive use of precalculated problem characteristics to save time between runs, for
example the minimum and maximum gap and travel distances between classes

– Four types of logical checks to eliminate variables whose value can be deduced
– Removal of constraints that are always satis�ed
– Reduction of the problem size by constraint aggregation

As an example of a logical check, we examine the existence of two classes which must take
place in the same room. If one of these classes has its time assignment �xed, we can then
exclude those time assignments of the second class which produce a con�ict.

�e computational implementation was done in Java using the commercial so�ware
CPLEX and Gurobi as the mixed integer programming solvers. �e solution strategy is
outlined in Agorithm 1 and consisted of two stages: the �rst stage focused at obtaining a
feasible solution via an incremental addition of the hard constraints, whereas the second
stage is a metaheuristic which combines iterative local search with mixed integer program-
ming and aims to improve the solution quality.

�e �rst stage performs a progressive addition of constraints into the model using
slack variables to account for any violated constraints. Once a feasible solution is obtained
the second stage iteratively improves the solution quality. In the end, the algorithm will
produce be�er and be�er solutions until the optimization is stopped for practical reasons.

In both stages a number of decision variables is �xed to their last-solution values to
reduce the size of the MIP. Several strategies of �xing the variables were developed and
implemented sequentially, such as �xing only the x or y variables, �xing all variables within
a class or �xing all classes within a so� distribution constraint. �e strategy for �xing the
variables is very important; the aim is to �nd a balance between �xing too many variables,
which has a short running time but would produce a small improvement in the quality,
and �xing too few variables which allows a wider exploration of the solution space at the
expense of increased computational time.

�e overall time taken for the �rst stage of the algorithm ranged from around 5 minutes
to 21 hours (5 to 1850 optimization runs), except for the instance “pu-proj-fal19” which re-
quired around 260 hours to produce the �rst feasible solution. �e amount of time needed
for the �rst stage depended not only on the size of the problem but also the size of the
solution space: small problems with few feasible timetable con�gurations can be hard to
solve. �e second stage took between 1 and 240 hours (50 to 5000 runs). Since the second
stage is a local improvement metaheuristic, the decision to stop the optimization was par-
tially based on practical considerations and, outside the competition, one could in theory
continue these runs to further improve the solution quality.
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Algorithm 1 A two-stage algorithm to solve and optimize the timetabling instances
{�e �rst stage to obtain a feasible solution}
Solve a minimal MIP containing constraints C-1, C-2, C-5
while Some constraint is violated do

Read the solution values of the last MIP solved
Fix randomly some decision variables to their solution values (0 or 1)
Create a MIP with all constraints C-1 to C-9 satis�ed by the current solution
Add to the MIP all the constraints C-1 to C-9 which are violated, using slack variables
Optimize the MIP: minimize the sum of the slack variables

end while
return feasible solution
{�e second stage to improve the solution quality}

Require: initial feasible solution
while time limit not reached do

Read the solution values of the last MIP solved
Fix some decision variables to their solution values (0 or 1)
Create a MIP containing all the hard constraints
Add variables and constraints related to student con�icts
Optimize the MIP: minimize the four cost terms

end while
return solution

3 Conclusions and future work

�is extended abstract presented a mixed integer programming approach for solving the
timetabling problems of the International Timetabling Competition 2019, which produced
a ranking of second place in this competition. Although the problem size for a typical
timetable was very large to be solved exactly using traditional mixed integer program-
ming tools, several improvements signi�cantly reduced the size to manageable levels. Once
a feasible solution was obtained, the use of mixed integer programming for the local search
optimization stage proved to be very powerful in improving the quality of the solutions
very quickly. A detailed article containing the detailed mathematical formulation, compu-
tational implementation, comprehensive results and in-depth analysis is in production and
will appear in due course.
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