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Abstract The personnel rostering problem is the problem of finding an optimal
way to assign employees to shifts, subject to a set of hard constraints which all
valid solutions must follow, and a set of soft constraints which define the relative
quality of valid solutions. The problem has received significant attention in the
literature and is addressed by a large number of exact and metaheuristic methods.
In order to make the complex and costly design of heuristics for the personnel
rostering problem automatic, we propose a new method combining Deep Neural
Network and Tree Search. By treating schedules as matrices, the neural network
can predict the distance between the current solution and the optimal solution.
It can select solution strategies by analyzing existing (near-)optimal solutions to
personnel rostering problem instances. Combined with branch and bound, the
network can give every node a probability which indicates the distance between it
and the optimal one, so that a well-informed choice can be made on which branch
to choose next and to prune the search tree.
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2 Ziyi Chen et al.

1 Introduction

In various occupations and work scenarios, arranging employees to different shifts
is a difficult job. The difficulty is that different employees have different require-
ments for life and work, which leads to preference of each employee. And there
are also requirements of the law that must be followed or diverse properties of dif-
ferent occupations. These regulations are what we call soft constraints and hard
constraints. Inflexible or unreasonable work schedules may affect the personnel
lives of employees, affect their emotion, make them dissatisfied with their work,
and may lead to a high turnover rate, which may have an adverse effect on the
employer’s operation and the experience impact of customers. If it can ensure that
employees are arranged for the right job at the right time. From the perspec-
tive of employees, such schedule can improve employee job satisfaction, reduce
employee dissatisfaction, fatigue and pressure to improve work efficiency and ser-
vice quality(Burke, De Causmaecker, Vanden Berghe & Landeghem, 2004). From
the perspective of employers and companies, an excellent schedule can increase
the retention rate of employees and maintain a reasonable financial budget for
employers.(Kazahaya, 2005; M’Hallah & Alkhabbaz, 2013)

Committed to solving such real-world problems, the personnel rostering prob-
lems have received great attention in the past decade. The personnel rostering
problems aim to generate a scheduling table based on the determined number
of employees and the time period. The schedule consists of a series of different
types of shifts (for example, morning, evening, and day-off) during the entire time
period. The basis for shifts is based on conditions such as the preference of em-
ployees for working hours and the requirements of laws or professional regulations,
which we call hard constraints and soft constraints. Hard constraints are condi-
tions that must be met for shift scheduling, while soft constraints can be violated
to a certain extent, but must pay a price for this. The quality of the schedule
can be evaluated by the penalty value for violating soft constraints. Due to the
complex and highly-constrained structure, personnel rostering problems are often
computationally challenging, and most variants of these problems are classified as
NP-hard.

There has been a lot of research on personnel rostering problems, which can
be divided into two categories: exact methods and metaheuristic methods (Smet,
Brucker, De Causmaecker & Vanden Berghe, 2016). The exact methods mainly in-
clude Integer Programming (IP)(Glass & Knight, 2010; Maenhout & Vanhoucke,
2009; M’Hallah & Alkhabbaz, 2013) and Constraint Programming (CP) (Girbea,
Suciu & Sisak, 2011; Soto, Crawford, Monfroy, Palma & Paredes, 2013), the exact
method can find the optimal solution, but the time cost it pays is also very expen-
sive, and it is usually unacceptable. To solve this problem, the researchers have
proposed metaheuristic methods, including Variable Neighborhood Search(Lü &
Hao, 2012; Rahimian, Akartunalı & Levine, 2017), Genetic Algorithms(Ayob, Had-
wan, Nazr & Ahmad, 2013; Burke, Cowling, De Causmaecker & Vanden Berghe,
2001) and stochastic algorithms (Tassopoulos et al., 2015) and tailored heuristic
algorithms (Brucker, Burke, Curtois, Qu & Vanden Berghe, 2010), these methods
can generate high-quality feasible solution in a short time, but the shortened time
comes at the cost of giving up accuracy.

And even so, these complex methods are not well applied. According to the
literature, many organizations are still manually producing schedules. The research
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Deep Neural Networked Assisted Tree Search for the Personnel Rostering Problem 3

has contributed to producing solutions automatically.(Burke, Kendall & Soubeiga,
2003; De Causmaecker & Vanden Berghe, 2010)

We propose a combined Deep Neural Network and Tree Search(DNNTS)based
methdodology. DNNTS is the first method that used Deep Neural Network(DNN)
model to guide tree search to solve the personnel rostering problem. It is based on a
learned model for branch selection during the tree search. The implementation can
be used to solve a number of problems from the literature(Schedulingbenchmarks.org).
These problems have the following characteristics and observations:

1. The (intermediate) solutions of a problem can be represented as m×n matrices
that can be transferred as input for the neural network.

2. The best solution can be found by modifying the initial solution in a number
of simple steps which defining the possible child nodes.

3. The problems have soft constraints which can be expressed in the penalty
function and set the lower bound for the tree search.

The main contributions of this work can be summarized as follows:

1. An automatic method DNNTS is applied to personnel rostering problem.
2. For some specific problems, this method is shown to find a good solution equal

to the best known lower bound.
3. The Deep Neural Network is used to make branch selection in the process of

tree search, which speeds up the search process.
4. Experimental evaluation of different search strategies.

This paper is organized as follows. In Chapter 2, we discuss work on person-
nel rostering and on combining machine learning and optimization techniques. In
Chapter 3, we describe the problem and formal problem definition. In Chapter 4,
we introduce the tree search method, the DNN model and the process of combining
these to solve the personnel rostering problem. In Chapter 5 we test our method,
show the results and make relevant comparisons. In Chapter 6 we summarize and
introduce the future work.

2 Literature review

In this chapter, we first review existing methods for personnel rostering. Similar
methods combining deep learning and optimization are discussed. There are many
optimization methods that integrate deep learning methods in other fields. We
summarize the methods that inspired us, and discuss the connection between these
and our methods.

2.1 Rostering problem

As mentioned before, the methods to solve personnel rostering problems are mainly
divided into two categories, exact methods and heuristic methods. Exact method
are concerned with finding proven optimal solutions. For the direction of IP, Maen-
hout & Vanhoucke (2009) present an exact branch-and-price algorithm for solving
the nurse scheduling problem incorporating multiple objectives and discuss dif-
ferent branching and pruning strategies. Some authors(Girbea et al., 2011; Soto
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et al., 2013) concentrate on CP, and introduce a model including soft constraints.
Mixed integer programming (MIP) is also a method that has attracted much atten-
tion. M’Hallah & Alkhabbaz (2013) describe the nurses’ timetabling problem of a
Kuwaiti health care unit and model it as a MIP. Glass & Knight (2010) start from
benchmark problems and extend their MIP approach to nurse rostering to take
better account of the practical considerations. Column generation has been effec-
tive to determine preference scheduling (Bard & Purnomo, 2005). applied Mixed
Integer Quadratic Programming.

Heuristic methods are mainly concerned with finding a solution quickly, and
even if the number of employees waiting to be scheduled is large and the con-
straints are complicated, an acceptable and feasible solution can be obtained in
an appropriate time. Genetic and Memetic algorithms form an important class
of metaheuristics that have been extensively applied in personnel rostering prob-
lem.(Aickelin & Dowsland, 2000, 2004; Easton & Mansour, 1999; Kawanaka, Ya-
mamoto, Yoshikawa, Shinogi & Tsuruoka, 2001)(Burke et al., 2001) In addition,
there are a lot of attempts on other types of methods, such as Tabu Search Algo-
rithms, some researchers (Burke, De Causmaecker & Vanden Berghe, 1999) pro-
posed a hybrid Tabu Search Algorithm to solve the personnel rostering problem
in Belgian hospitals. Also simulated annealing algorithms. As a representative, an
iteratively local searching method based on simulated annealing(Cheng, Ozaku,
Kuwahara, Kogure & Ota, 2008), and a shift mode method using simulated an-
nealing were proposed.(Hadwan & Ayob, 2010) Aickelin & Dowsland (2004) pro-
posed a mode conversion technique arising at a major UK hospital. And Todorović,
Petrović & Teodorović (2013) proposed the Bee Colony Optimization method to
solve this problem.

Burke et al. (2004) analyze the state of the art of research on nurse roster-
ing problems and categorized papers according to solution methods, constraints,
performance measures, and information on the planning period, the data that is
used, the number of skills, and their substitutability, etc. De Causmaecker & Van-
den Berghe (2010) build on the work of the last decades to produce a classification
system for nurse rostering problems. Vanden Berghe, Beliën, Bruecker, Demeule-
meester & Boeck (2013) present a review of literature on personnel scheduling
and evaluate the literature from different perspectives of personnel characteristics,
decision delineation and shifts definitions, constraints, performance measures, flex-
ibility, application area and applicability of research.

2.2 Deep learning and Optimization

For the combination of deep learning and optimization, some researchers have
made some attempts. For example, Hottung, Tanaka & Tierney (2020) use two
DNN models to guide the tree search to solve Containers Pre-Marshalling Prob-
lem. As is mentioned in the paper written by De Causmaecker (2017), data science
meets optimization when using data science in algorithm construction and apply-
ing deep learning while engineering an algorithm.

Combining operations research and artificial intelligence allows using powerful
solvers such as IBM CP Optimiser(Optimizer, 2015) and Gurobi (Gurobi Opti-
mization, 2015), to be used in hybrid environments. e.g. a method combing CP
and heuristics, which is an iterated local search framework that uses CP for initial
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solution construction and diversification, and a variable neighborhood descent for
iterative improvement. (Stølevik, Nordlander, Riise & Frøyseth, 2011). Another
method divides the original problem into sub-problems, solves sub-problems by
IP, and combines IP and local search to get results (Valouxis, Gogos, Goulas, Ale-
fragis & Housos, 2012). And a less studied combination of IP and CP (Rahimian,
Akartunali & Levine, 2015) allow to take advantage of the complementarity in the
different methodologies. Rahimian et al. (2015) proposed a new hybrid algorithm
of IP and CP to solve the personnel rostering problem. It uses IP to find the best
solution, and CP to find feasible solutions effectively. This hybrid algorithms uses
information from specific problems to reduce the search space, fine-tunes search
parameters and improves the efficiency of the entire search process in a novel way.

Lodi & Zarpellon (2017) and Dilkina, Khalil & Nemhauser (2017) outline meth-
ods for applying learning to variable and node selection problems in MIP. Khalil,
Dilkina, Nemhauser, Ahmed & Shao (2017) use logistic regression to predict when
to apply the original heuristic when solving MIPs. The author uses similar fea-
tures as mentioned by Khalil, Le Bodic, Song, Nemhauser & Dilkina (2016) and
can improve the performance of the MIP solver. There are other papers that use
machine learning techniques to solve MIP (Kruber, Lübbecke & Parmentier, 2017;
Bonfietti, Lombardi & Milano, 2015).

Vinyals, Fortunato & Jaitly (2015) propose a method called a pointer net-
work and train it to generate solutions to traveling salesman problems through
supervised learning. Bello, Pham, Le, Norouzi & Bengio (2016) use reinforcement
learning to train a pointer network for the traveling salesman problem. Kool &
Welling (2018) propose a similar method, which can also be used to solve other
routing problems, such as vehicle routing problems. All these methods focus on the
training and architecture of the DNNs network, rather than merging the DNNs
network into a complex search process.

3 Problem description

There are many personnel rostering problems in different work contexts, such as
nurse scheduling, hotel reception scheduling or other situations. In the personnel
rostering problems, the people waiting to be assigned are called employees, the
different time in everyday waiting to be occupied are called shifts. Employees are
assigned to shifts in a certain period of time according to certain constraints.
Constraints define the limitations of assignments for each employee, there are
hard constraints which the solution must obey and soft constraints which will give
some penalty when the solution does not meet the requirements. These constraints
can be used to model restrictions such as ‘employees should work more than 3
days and less than 6 days a week’ or ‘employee A does not want to work on
Wednesday’(De Causmaecker & Vanden Berghe, 2010; Paul & Knust, 2015). The
obtained feasible assignments that meet all hard constraints are called solutions.
Each solution has a value of penalty, which is determined by the level of compliance
with soft constraints. The personnel rostering problem aims to find an allocation
scheme with the lowest penalty value that meets all hard constraints. It is an
NP-hard problem(Osogami & Imai, 2000).
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6 Ziyi Chen et al.

Fig. 1 Solution and corresponding mathematical matrix expression

3.1 Formal problem definition

Personnel rostering problems are characterized by a set of employees, a set of
a scheduling period of days, and a set of shifts. A shift is a fixed time interval
which denotes a working period. Each shift is characterized by a unique type
which classifies the shifts in various ways, e.g., by time interval (morning, late),
by required qualifications (senior, junior), or by a combination of these (morning-
senior, late-junior). A shift is considered to occur on the day where its time interval
starts. The number of employees required for each shift can vary from day to day,
and is typically more than one employee. An assignment is the allocation of an
employee to a shift on a day. In this paper, the solution is regarded as an e×t
matrix which contains in each cell either an assignment or a day-off. Days T is a
period during which the assignment begins and ends. Fig.1 shows how to transfer
a solution to a matrix.

Constraints can be expressed as an exact, ranged, minimum or maximum re-
quirement. In the case of exact demand, the specified value is exactly the number of
employees to be assigned. A ranged definition requires that the number of assigned
employees should be within a specified time interval. When such an interval has
no upper(lower) limit, the requirement is defined as a minimum(maximum).(Smet
et al., 2016)

The parameters and decision variables (Curtois & Qu, 2014) are described as
following:
Parameters:

E set of employees.
h number of days in the planning horizon.
T set of days in the planning horizon= {1...h}.
W set of weekends in the planning horizon= {1...h/7}.
S set of shift types.
Rt set of shift types that cannot be assigned immediately after shift type t.
Ni set of days that employee i cannot be assigned a shift on.
lt length of shift type t in minutes.
mmax

es maximum number of shifts of type s that can be assigned to employee e.
bmin
e minimum number of minutes that employee e must be assigned.
bmax
e maximum number of minutes that employee e can be assigned.
cmin
e minimum number of consecutive shifts that employee e must work.
cmax
e maximum number of consecutive shifts that employee e can work.
omin
e minimum number of consecutive days off that employee e can be assigned.
amax
e maximum number of weekends that employee e can work.

qets penalty if shift type s is not assigned to employee e on day t.
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Deep Neural Networked Assisted Tree Search for the Personnel Rostering Problem 7

pets penalty if shift type s is assigned to employee e on day t.
udt preferred total number of employees assigned shift type s on day t.
vmin
ts weight if below the preferred cover for shift type s on day t.
vmax
ts weight if exceeding the preferred cover for shift type s on day t.

Decision variables:

xets 1 if employee e is assigned shift type s on day t, 0 otherwise
kew 1 if employee e works on weekend w, 0 otherwise.
yts total below the preferred cover for shift type s on day t.
zts total above the preferred cover for shift type s on day t.

Then the problem can be formulated below:

min
∑
e∈E

∑
t∈T

∑
s∈S

qets(1− xets) +
∑
e∈E

∑
t∈T

∑
s∈S

petsxets+

∑
t∈T

∑
s∈S

ytsv
min
ts +

∑
t∈T

∑
s∈S

ztsv
max
ts

(1)

∑
s∈S

xets ≤ 1, ∀e ∈ E, t ∈ T (2)

xets + xe(t+1)s′ ≤ 1, ∀e ∈ E, t ∈ {1, ..., h− 1} , s, s′ ∈ S (3)

∑
t∈T

xets ≤ mmax
es , ∀e ∈ E, s ∈ S (4)

bmin
e ≤

∑
t∈T

∑
s∈S

lsxets ≤ bmax
e , ∀e ∈ E (5)

d+cmax
e∑

j=d

∑
s∈S

xejs ≤ cmax
e , ∀e ∈ E, d ∈ {1...h− cmax

e } (6)

∑
s∈S

xets + (k −
t+k∑

j=t+1

∑
s∈S

xejs +
∑
s∈S

xi(t+k+1)s > 0,

∀e ∈ E, k ∈
{

1...cmin
e − 1

}
, t ∈ {1...h− (k + 1)}

(7)

(1−
∑
s∈S

xets) +
t+k∑

j=t+1

∑
s∈S

xejs + (1−
∑
s∈S

xi(t+k+1)s) > 0

∀e ∈ E, k ∈
{

1...omin
e − 1

}
, d ∈ {1...h− (k + 1)}

(8)
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8 Ziyi Chen et al.

∑
w∈W

kew ≤ amax
e ∀e ∈ E (9)

xets = 0, ∃e ∈ E, t ∈ T, s ∈ S (10)

Formula (1) is the objective function, which is to minimize the penalty value.
Constraint(2) ensures that an employee cannot be assigned more than one shift
on a single day. Constraint(3) describes some types of shifts cannot follow others.
Constraint(4) is used to limit the maximum number of shifts of each type that
can be assigned to employees. For example, some employees will have contracts
which do not allow them to work night shifts or only a maximum number of
night shifts. Constraint(5) ensures that the minimum and the maximum work
time. The total minutes worked by each employee must be between a minimum
and maximum. These limits can vary depending on whether the employee is full-
time or part-time. Constraints(6) and (7) describe the consecutive constraints.
Constraint(8) models the minimum consecutive days off in a similar way to the
minimum consecutive shifts constraint. Constraint(9) sets the maximum number
of weekends. A weekend is considered as being worked if the employee has a shift
on the Saturday or the Sunday. Constraint(10) describes some days that employees
cannot work, for example, they are on vacation.(Curtois & Qu, 2014)

4 Method

The DNNTS method integrates DNN into a heuristic tree search to decide which
branch to choose next. The DNN is trained offline by supervised learning on exist-
ing (near-) optimal solutions for the defined personnel rostering problem and are
then used to make branch decisions during the search.

The core idea of the method is to treat each feasible solution as an e×t matrix
as Fig 1, and change the matrix through several predetermined change strategies,
thereby gradually approaching the optimal solution. In the process of solving the
problem, we use tree search to explore all the possibilities, and use DNN to decide
the order to explore. As shown in Fig 2, whenever a new unexplored node A is
found by the tree search, according to predetermined change strategies, it has
three corresponding child nodes B, C and D, the DNN will predict which node
has the highest probability to arrive at the best solution, thereby determining the
next search node C.

In this section, we first describe how to form and train a DNN model to do
prediction. We then explain in detail how personnel rostering problems can be
solved using tree search. Finally, we show how to use DNN in tree search to do
branching decisions.

4.1 Tree search

Methods based on tree search can be used to solve optimization problems. Begin-
ning with the root node, the search tree is explored by systematically exploring
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Deep Neural Networked Assisted Tree Search for the Personnel Rostering Problem 9

Fig. 2 Overview of the combination method

the child nodes of the root node and subsequent nodes. The solution of a given
optimization problem can be understood as a leaf node in the tree.

In the process of tree search, each node in the tree represents a feasible ar-
rangement for employees according to the hard constraints. The initial solution
is represented by the root node. The child nodes of a node represent best solu-
tions that can be reached by only one change from a set of predetermined change
strategies.

4.1.1 Change strategies

There are many ways to simply modify the matrix representing a solution, such
as exchanging two rows in the matrix randomly or changing some numbers in the
matrix. To make the search process converge faster, we did related experiments in
section 5.2 and identified three change strategies.

– Strategy 1: randomly change 2 employees’ shifts in one day.
– Strategy 2: randomly change 2 day’s shifts for one same employee.
– Strategy 3: randomly chose one shift where one of the employees doesn’t need

to work, and change his status to work on that shift.

4.2 DNN

The DNN is a method inspired by biological neural networks. A DNN consists of
multiple layers of neurons. Each neuron receives one or more weighted inputs from
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1 0 0

0 1 0

0 1 0

1 1 0

0 1 0

0 1 1

1 0 0

0 1 0

1

Strategy 1

Strategy 2

Strategy 3

Fig. 3 Three change strategies

neurons of the previous layer, summarizes those inputs, and applies an activation
function to the inputs. The value from the activation function is then sent out to
the neurons of the next layer. The DNN “learns” by optimizing the weights on the
arcs of the network.(Hottung et al., 2020)

DNN can be used for both classification (the space Y consists of a set of discrete
values) as well as regression (Y can take any value in R), and we use regression
DNN in this work to predict the probability that a solution might be the optimal
one or might become the optimal one. To substantiate the word “might”, we will
use the distance to express the probability.

Definition 1 (Distance) The distance is the number of simple changes needed
to be used in the current solution to become the best one.

Definition 2 (Probability) The probability is used to measure the possibility
that the current solution might be the optimal solution. For distance ∈ N, k > 0.

probability = 1− k × distance (11)

Simple change has been explained in section 4.1.1. Correspondingly, the shorter
the distance between the current solution and the optimal solution, the higher is
the probability, and the more likely the current solution might be or become the
optimal solution. Fig.4 shows how to understand the distance and probability.

4.2.1 DNN forming

The DNN we use in this paper is a multi-layer DNN as Fig.5 shows. The first
layer is the input layer, which has e× t nodes and is used to one-dimensional the
input multidimensional matrix. The middle layers are hidden layers, the number of
their layers and nodes is determined through parameter adjustment. Each node in
hidden layers uses the activation function, defined as ReLU(x) = max {0, x}. The
output layer contains only one node. Its activation function is a sigmoid function,
defined as S(x) = 1/(1 + e−x), in order to output probability values between 0-1.
As for the optimizer, we use the Adam optimizer (Kingma & Ba, 2014), which is
based on a gradient descent.
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Fig. 4 The link between distance and probability

Fig. 5 The matrix type input of our DNN model

4.2.2 DNN training

The work of training the DNN model is described below. As is well known, the
training set is a dataset of examples used for learning, that is to fit the parameters
of the model, such as weight. A set of representative instances is divided into a
training set and a validation set. Also, these two kinds of sets consist of a set
of data(input) and labels(output). During the process of training, each instance
in the training set is input into the DNN, and propagated by the network, in
order to generate relative output. Then these values are compared to the labels
in the training data using a loss function, which is used to compute the accuracy
of the prediction. In the next step, according to the influence of network weights
on the loss function, the DNN model needs to adjust the weights of the network
in order to reduce the value of the loss function in the next iteration (gradient
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descent). After dealing with all the instances in the training set, the first epoch of
the training is completed. We can repeat the training for many epochs until the
error doesn’t improve at all.(Goodfellow, Bengio & Courville, 2016)

As a research of solving classical problems with new methods, we have many
instances that can be used as the data(input) of the training set, but there is
nothing to use as the label(output) for the training set. It’s impractical to give
every instance a label manually. We will use another method to obtain a relatively
convincible training set for training the DNN model. The method will be explained
in chapter 4.3, after the whole process is described in detail.

4.3 DNN assisted tree search

4.3.1 Search Strategies

There are many kinds of search strategies in tree search, such as depth-first search
(DFS) of nodes that traverse the tree along the depth of the tree, breadth-first
search (BFS) of nodes that traverse the tree along the width of the tree. In this
paper, we refer to the idea of Depth-First-Search and improve it from different
ways. New search strategies can explore the tree according to the probability value
given by the DNN model and also take the penalty into consideration. We will
discuss these strategies in detail below.

Depth-First-Search Depth-First-Search (DFS) is an algorithm for traversing or
searching trees or graphs. This algorithm searches branches of the search tree as
deep as possible. When the edge of node v has been searched, the search will
go back to the starting node of the edge where node v was found. This process
continues until all nodes have been found reachable from the source node. If there
are still undiscovered nodes, select one of them as the source node and repeat
the above process. The entire process is repeated until all nodes are visited. This
algorithm does not adjust the execution strategy based on the information such
as the structure of the graph.

For example, the tree in Fig.7. According to depth-first principle, A is the initial
node which is explored first. Then start from the left node of all unexplored children
of A, that means B is the next node after A. The same way, after exploring B, then
E rather than C, until the bottom of the branch H is explored. Next returning to
an unvisited node next to B, the depth-first traversal is repeated until all nodes
in the tree have been visited. The search order in Fig.6 is A → B → E → H →
F → C → G→ D.

Algorithm1 shows the depth first search strategy. The algorithm starts with
the initial solution s0, stored in a node n, that has several properties. These are
whether the current node is visited, visited(n), the current penalty of associated
solution, penalty(n), the children nodes of the current node, child(n). The penalty
of the best solution p and the best solution bestn are set as the global value.

Probability-Fist-Strategy This strategy also follows the principle of searching the
tree as deep as possible. But we add each node in the tree a value of probability
by the DNN model, and we will use it to replace the left-first order (Probability-
Fist-Strategy (PFS)). That means that when exploring the child nodes of v, the
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Fig. 6 DFS path

Algorithm 1 Depth first search strategy
Input: A node n of search tree.
Global: Penalty of the best solution p, best solution bestn
Output: Node representing the best solution.

function DNNTS-DFS(n)
if isvisited(n) = true then return bestn

isvisited(n) = true
if penalty(n) < p then

p← penalty(n)
bestn ← n

for n′ in child(n)
DNNTS-DFS(n′)

return bestn

child node with higher probability value will be explored first, rather than the left
child node. But this principle only applies to the child nodes of the same layer and
the same parent node. For nodes that are not in the same layer or nodes that are
not a parent node, this principle does not apply.

For example, the tree in Fig.8. node A which is explored first, but the proba-
bility of its left child node is 0.7, less than the right one. So, the next step starts
from D. The same way, after exploring D, then exploring B and its subtree. The
resulting search order in Fig.7 is A → D → B → E → H → F → C → G.
Algorithm2 shows the probability first strategy. The setting is the same as the
Algorithm1, but there is an additional DNN(n), which represent the output of
the DNN model when the solution associated with node n is the input. i.e. The
probability of solution associated with node n.

Probability-Penalty-Strategy In the personnel rostering problem, the penalty de-
termines whether the solution is optimal. When the penalty is taken into con-
sideration is addressed as the Probability-Penalty-Strategy (PPS). We need to
normalize the probability and penalty values to the same unit of measurement,
and give them different weights to get a value to replace the probability value in
the previous strategy.

Algorithm3 shows the probability penalty strategy. The setting is the same
as the Algorithm2, but there are two additional global values w1 and w2, which
represent the weight for probability and weight for penalty respectively.
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Fig. 7 PFS path

Algorithm 2 Probability first strategy
Input: A node n of search tree.
Global: Penalty of the best solution p, best solution bestn
Output: Node representing the best solution.

function DNNTS-PFS(n)
if isvisited(n) = true then return bestn

isvisited(n) = true
if penalty(n) < p then

p← penalty(n)
bestn ← n

Sort child(n) by DNN(n′) for each n′ ∈ child(n)
for n′ in child(n)

DNNTS-PFS(n′)
return bestn

Algorithm 3 Probability Penalty strategy
Input: A node n of search tree.
Global: Penalty of the best solution p, best solution bestn,weight for probability w1, weight

for penalty w2

Output: Node representing the best solution.
function DNNTS-PPS(n)
if isvisited(n) = true then return bestn

isvisited(n) = true
if penalty(n) < p then

p← penalty(n)
bestn ← n

Sort child(n) by w1× DNN(n′)+w2 × penalty(n′) for each n′ ∈ child(n)
for n′ in child(n)

DNNTS-PPS(n′)
return bestn

4.3.2 DNN assisted tree search model

After forming and training the DNN model, it is used in the tree search as follows.
When the node nk is to be explored, the associated SolutionK is changed by 3
strategies as mentioned before, iterating through all the possibilities in each strat-
egy and get 3 sets. The set obtained through strategy 1, 2, 3 are {SolutionK10,
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SolutionK11, SolutionK12, . . . }, {SolutionK20, Solu− tionK21, SolutionK22, . . . },
{SolutionK30, Solution−
K31, SolutionK32, . . . }. Next all possibilities are given to the DNN model. These
matrices of Solution are then propagated through the DNN model. We use a
sigmoid activation function in the output layer to get the result between 0 and 1,
this allows us to use the output as probability. Left the highest probability as the
child node for each strategy, so among 3 strategies, we get 3 child nodes for each
father node. The left probability is then used to decide which child node should
be explored. The decision-making process is determined by the search strategies
proposed in 4.3.1, for example, exploring the node with highest probability first
by PFS. Fig.8 shows a whole process.

4.3.3 Initial dataset

We mentioned that the work applied to personnel rostering problem, although
there are enough solutions (input), but no labels(output). So, we will use an au-
tomated method to generate a dataset for training the DNN model, including
solution and labels.

First of all, for a specific personnel rostering problem that people already know
the best known solution so far, we set the probability of the best known solution so
far to 1, then randomly generate other solutions based on the best known solution.
Actually, it means randomly generate e× t matrices according to the best known
solution. And assign different labels according to the following conditions.

1. The most important thing is to check whether the randomly generated matrix
meets the hard constraint. In case the hard constraint is not satisfied, the data
will not be stored in the generated data set. Only matrices meeting the hard
constraint can enter the next step to judge and assign different labels.

2. In order to give each matrix a label, we need to check the number of change
strategies required(mentioned in chapter 4.3.1) to let the current matrix change
to become the optimal solution for the current specific personnel rostering
problem, then use a piecewise constant function to correspond the number
of changes to the label. The less change strategies are needed, it means the
more probable it is for the current matrix to change into the optimal solution.
Equation12 is the piecewise constant function we use in this work.

f(x) =



0.9 0 < x ≤ 3

0.7 3 < x ≤ 6

0.5 6 < x ≤ 9

0.3 9 < x ≤ 12

0.1 x > 12

(12)

After generating all the data, we use these data to initially train our DNN
model. After training, we can then use the trained DNN model to solve the spe-
cific personnel rostering problem which is already known best known solution. In
a complete solution process, we can get a complete path {s0, s1, s2, . . . , sop} from
how the initial solution s0 changes into the final best known solution sop. Accord-
ing to the length of the entire path and the position of the sk in the path, the
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Fig. 8 The process of Neural Networked Assisted Tree Search for the Personnel Rostering
Problem

distance from the best known solution can be found, from which the higher confi-
dence of probability value can be given. At the same time, whenever enough data
for training the DNN model is obtained, the model can be retrained. The specific
problem model and initial solution s0 are continuously changed to get enough data
to finally complete the model training.

The use of these randomly generated data to train the DNN model at the
beginning will not have a great impact on the efficiency of the final model, because
these data are just to make the model have the ability to solve the problem, maybe
the efficiency of the DNN model trained from the randomly generated data set is
not very high, but at least it can ensure that the model can successfully solve a
specific problem and give a complete path from the initial solution s0 to the best

341

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



Deep Neural Networked Assisted Tree Search for the Personnel Rostering Problem 17

known solution sop. It is our purpose to obtain a large number of such paths, so
that we can use the data and labels in these paths to retrain our DNN model with
more accurate data, and through continuous iteration, our model reaches a good
level.

5 Result

We now use the instance to evaluate the performance of our DNNTS method in
3 aspects. In order to measure whether our method is competitive with current
methods, we experiment on a variety of personnel rostering problem instances by
different methods. To find out the most efficient change strategies, we use different
combinations of change strategies for comparison. We also compare DFS, PFS and
PPS by the same instance for several times to find the suitable search strategy.

5.1 Experimental setup

In order to get a good performing DNN, we need a large number of instances.
We use the method from section 4.3.3 to generate 2 different types of personnel
rostering problem instance sets: I1 and I2. In I1 and I2, both of them start from
Monday, the horizon length of days is 14, T = {1, 2, . . . 14}. There is only 1 type
of shift, the set of shifts S = {1}. 8 employees are assigned to different shifts, E =
{1, 2, . . . , 8}. More detailed parameters setting are referred from Nurse Rostering
Benchmark Instances(Schedulingbenchmarks.org).

We train our DNN on the instance sets mentioned above. I1 is an instance set
including more than 4000 instances, which is used to train the DNN model initially.
To ensure the better performance of the DNN model, we generate I2 of 2000
accurate instances, which is used to retrain the DNN model. After completing the
training, we change one of the above specific problem parameters or add constraints
to make it a different problem scenario, and then try to use our method to find the
best solution to the new problem within a certain time limit. If the best solution
cannot be found within the limited time, the current best solution is used.

We implement our algorithm in Python 3.7 using keras 2.3.0 under tensor-
flow 2.0.0 as the backend for the implementation of the DNN. All networks are
trained using the Adam optimizer, which is based on a gradient descent(Kingma
& Ba, 2014). All experiments are conducted using Tier-2 Cluster of the Vlaams
Supercomputer Center.

5.2 Experiment 1: Comparison of change strategies

The correct change strategy in the search process of the selection tree is critical
to the good performance of the algorithm. Therefore, we propose three different
possible combinations of change strategies for DNNTS. We train the DNN model
on the I2 data set, and then we apply the DNN model to the tree search with dif-
ferent change strategies combinations to evaluate their impact on the performance
of the algorithm.

The combinations of change strategies we used for comparison is as follows:
Combination 1:
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– Strategy1: randomly change 2 employees’ shifts in one day.
– Strategy2: randomly change 2 days shifts for one same employee.
– Strategy3: randomly chose one shift which one of the employees who doesn’t

need to work, and change his status to work on that shift.

Combination 2:

– Strategy1: randomly change 2 employees’ shifts in one day.
– Strategy2: randomly change 2 employees’ shifts for 2 neighboring days.
– Strategy3: randomly change 2 days shifts for one same employee.

Combination 3:

– Strategy1: randomly change 2 employees’ shifts in one day.
– Strategy2: randomly change 2 employees’ shifts for 2 neighboring days.
– Strategy3: randomly change 2 days shifts for one same employee.

The optimization criterion is minimal penalty, the lower the better. A perfor-
mance measure is the average time to solve. Another performance measure are
the Figures showing declining process of the current optimal penalty. Since the
final solution found by our method does not prove to be optimal, we will use final
solution to represent the best solution we find in a complete algorithm process.

As can be seen from Table 1, whether the algorithm meets the stop criterion
after running for 60s, 600s, or the end of the algorithm, the performance of the
change strategies combination 1 is much better than the other two combinations
in all aspects. As shown in the Table 1, combination 1 can find the current known
best solution with the penalty value of 607 in less than 1 minute. In contrast,
although strategy 3 can find a relatively good solution, the total time of the entire
algorithm process is too long, nearly half an hour. Although combination 2 is
slightly better than combination 3 in the total time, its final solution penalty
value is worse than combination 3. As can be seen from Fig.9, whether it is based
on the depth of the tree search or time, the convergence speed of combination
1 is much faster than the other two combinations, and the search process will
not cost too much time on these feasible solutions with similar penalty value, it
almost directly comes to the final solution with the shortest path. However, the
other two combinations consume too much time in the local search, which causes
many platforms on the curve in Fig.9, so the convergence rate becomes slow.
This is closely related to the combination of changing strategies. The strategy
”Randomly change 2 employees’ shifts in one day.” can ensure that the elements
of the solution matrix are exchanged up and down, and the strategy ”Randomly
change 2 employees’ shifts for one same employee.” can ensure that the elements
of the solution matrix are exchanged left and right. The strategy ”Randomly chose
one shift which one of the employees who doesn’t need to work, and change his
status to work on that shift.” can control the number of different elements in the
matrix. These three strategies can guarantee that the matrix changes covers every
possibility.

5.3 Comparison of search strategies

We need to compare three search strategies mentioned above in order to find
the best one, namely DFS, PFS and PPS. To ensure a fair comparison among
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Table 1 Comparison of different obfuscations in terms of their transformation capabilities

Combination
Convergence Speed Final result
60s 600s Final penalty Time(s)

1 607 607 607 43.41
2 1015 812 812 680.78
3 1015 708 708 1363.25

(a) Penalty with the depth of the tree (b) Penalty with the time

Fig. 9 The image of the convergence speed

strategies, we use the DNN model trained on the I2 dataset for each strategy to
evaluate the performance. Table 2 also provides the current best solution found
in a specific period of time(60s and 600s), the final solution, and the time of the
three search strategies.

As can be seen from Table 2, PFS and PPS can find the final solution with the
same penalty value, but PFS takes a little bit longer - just 13s. However, whether
the current best solution in 60s , 600s or the final solution in the whole process,
the performance of DFS is far inferior to PFS and PPS. It can be seen from Table
2 that the introduction of the DNN model to the branch selection in the process of
ordinary tree search has a certain effect. It can be further seen from Fig.10 that,
regardless of the depth or time of the search tree, DFS will encounter the problem
that the penalty value convergence is too slow during the search process, which is
actually caused by not selecting the correct branch, thus wasting more time. From
the final result, the final solution of DFS stagnates at a penalty value of 707, while
the convergence rate and the final solution of PPS and PFS are far superior to
DFS. The final result further proves that the method of combing the DNN model
with the tree search really works. Compared to PFS, the penalty value of PPS
will converge slightly faster than PFS. This is why we proposed PPS. By giving
Penalty a certain weight when selecting branches, it helps the search tree reach to
the root as fast as possible in the beginning of the search, and the fast approach
to the final solution also plays the guiding role of the DNN model.

Compared with ordinary search methods, because of the guidance of the DNN
model, the number of nodes searched by DNNTS is many orders of magnitude

344

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



20 Ziyi Chen et al.

Table 2 Comparison of three search strategies

Search Strategy
Convergence Speed Final result
60s 600s Final penalty Time(s)

DFS 1015 908 707 3453.47
PFS 607 607 607 43.41
PPS 607 607 607 30.54

less. Usually the best results can be achieved in twenty selections, which clearly
shows that the DNN model is very effective.

(a) Penalty with the depth of the tree (b) Penalty with the time

Fig. 10 The image of the convergence speed

5.4 Experiment 3: Evaluation of methods

We compare the DNNTS and Roster viewer (Curtois & Qu, 2014), which has
two built-in solutions-VDS (3.11) and Branch and Price (B&P). We compare
these three methods on eight Groups with different problem types and report
the performance of each method. Group 1 and Group 2 are designed by our-
selves, and Group 3-11 are the instances from Nurse Rostering Benchmark In-
stances(Schedulingbenchmarks.org). Method VDS requires a limit on the maxi-
mum time. So we first run DNNTS, and set the maximum time of VDS equal to
the time costed by DNNTS. So that we can better observe the performance of the
different methods during the same time. The parameters of different group are
shown in Table 3.

The results are shown in Table 4. For small instances (Group 1 to Group 9),
B&P can find the best solution in a really short time, but for big instances(Group
10 and Group 11), it meets some problem. This is the exponential explosion prob-
lem often encountered in B&P method. Since there is a DNN model to do branch
decision, our DNNTS method consumes acceptable time in all groups. In terms
of the quality of the final solution, The performance of VDS isn’t good, probably
because it is an traversal algorithm, so maybe it needs more time to get better
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Table 3 Parameters of each Group

Group Weeks Employees Shift types Hard constraints Best known Solution

1 2 8 1 2 /
2 2 8 1 3 /
3 2 8 1 10 607
4 2 14 2 10 828
5 2 20 3 10 1001
6 4 10 2 10 1716
7 4 16 2 10 1143
8 4 18 3 10 1950
9 4 20 3 10 1056
10 4 30 4 10 1300
11 6 45 6 10 3833

results. Some penalty value of the final solution found by DNNTS are the same
as the best known solutions, others are near to the best known solutions, which
proves our method can be applied to the public instance set and propagated.
The result shows that DNNTS can compete with the latest methods in terms of
solution time and solution quality. And the result also illustrates the positive sig-
nificance of introducing the DNN model into the tree search, and also emphasizes
the importance of adequate training of the DNN model.

Table 4 Comparison to other methods on the test set

Group Best Known Penalty
Final Penalty Time(s)
DNNTS B&P VDS DNNTS B&P VDS

1 / 0 0 0 1.98 0 2
2 / 1 1 1 1.60 0 2
3 607 607 607 607 43.42 0.27 44
4 828 828 828 937 205.47 0.13 206
5 1001 1001 1001 1103 170.77 0.45 171
6 1716 1718 1716 1721 283.9 1.5 284
7 1143 1143 1160 1636 78.28 25.61 79
8 1950 1952 1952 2340 1800.78 10.45 1801
9 1056 1057 1058 1278 1589.32 93.73 1590
10 1300 1317 1308 2643 560.93 11831.06 561
11 3827 4378 / 5514 2660.91 Out of memory 2661

6 Conclusion and future work

We propose a method aim to the personnel rostering problem combining DNN
and tree search, which uses deep learning to assist branch selection. We prove that
compared with the examples in the literature, DNNTS finds good solutions equal
or near to the best known solutions, which are able to compare with the rostering
problem solver. DNNTS can solve problems with very little user input. It mainly
relies on the best known solution provided to learn how to build a solution by
itself. There are many ways for DNNTS to work in the future. If we can model
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other optimization problem as a standard model with the following characteristics,
applying DNNTS to other similar optimization problems is a possible choice.

– The solutions of the problems can be regarded as m×n matrices, so that they
can be transferred as the input of the neural network.

– The best solution can be found by some changes from the initial solution, so
that some child nodes can be derived at each parent node.

– The problems have some soft constraints, so that we can use the penalty to set
the lower bound of the tree search.

Other areas of future work include the use of reinforcement learning and others
to further improve efficiency. We suggest that by using a faster programming
language or using a GPU instead of a neural network’s CPU, the runtime of the
results we obtained may be improved. In addition, many changes can be made to
DNNTS, such as reconfiguring the DNN network structure or adjusting branch
pruning functions. These changes can improve performance in terms of runtime
and solution quality.

References

Aickelin, U., & Dowsland, K. A. (2000). Exploiting problem structure in a genetic
algorithm approach to a nurse rostering problem. Journal of scheduling , 3 ,
139–153.

Aickelin, U., & Dowsland, K. A. (2004). An indirect genetic algorithm for a nurse-
scheduling problem. Computers & Operations Research, 31 , 761–778. doi:10.
1016/s0305-0548(03)00034-0.

Ayob, M., Hadwan, M., Nazr, M. Z. A., & Ahmad, Z. (2013). Enhanced harmony
search algorithm for nurse rostering problems. Journal of Applied Sciences, 13 ,
846–853. doi:10.3923/jas.2013.846.853.

Bard, J. F., & Purnomo, H. W. (2005). Preference scheduling for nurses using
column generation. European Journal of Operational Research, 164 , 510–534.
doi:10.1016/j.ejor.2003.06.046.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinato-
rial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 ,
.

Bonfietti, A., Lombardi, M., & Milano, M. (2015). Embedding decision trees and
random forests in constraint programming. In International Conference on AI
and OR Techniques in Constriant Programming for Combinatorial Optimization
Problems (pp. 74–90). Springer.

Brucker, P., Burke, E. K., Curtois, T., Qu, R., & Vanden Berghe, G. (2010). A shift
sequence based approach for nurse scheduling and a new benchmark dataset.
Journal of Heuristics, 16 , 559–573.

Burke, E., Cowling, P., De Causmaecker, P., & Vanden Berghe, G. (2001). A
memetic approach to the nurse rostering problem. Applied Intelligence, 15 ,
199–214. doi:10.1023/a:1011291030731.

Burke, E., De Causmaecker, P., & Vanden Berghe, G. (1999). A hybrid tabu
search algorithm for the nurse rostering problem. In B. McKay, X. Yao, C. S.
Newton, J.-H. Kim, & T. Furuhashi (Eds.), Simulated Evolution and Learning
(pp. 187–194). Berlin, Heidelberg: Springer Berlin Heidelberg.

347

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



Deep Neural Networked Assisted Tree Search for the Personnel Rostering Problem 23

Burke, E., Kendall, G., & Soubeiga, E. (2003). A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics, 9 , 451–470. doi:10.1023/b:
heur.0000012446.94732.b6.

Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Landeghem, H. V.
(2004). The state of the art of nurse rostering. Journal of Scheduling , 7 , 441–
499. doi:10.1023/b:josh.0000046076.75950.0b.

Cheng, M., Ozaku, H. I., Kuwahara, N., Kogure, K., & Ota, J. (2008). Simulated
annealing algorithm for scheduling problem in daily nursing cares. In 2008 IEEE
International Conference on Systems, Man and Cybernetics (pp. 1681–1687).

Curtois, T., & Qu, R. (2014). Computational results on new staff scheduling
benchmark instances. tech. report , .

De Causmaecker, P. (2017). Data science meets optimization. In A. Sforza, &
C. Sterle (Eds.), Optimization and Decision Science: Methodologies and Appli-
cations (pp. 13–20). Cham: Springer International Publishing.

De Causmaecker, P., & Vanden Berghe, G. (2010). A categorisation of
nurse rostering problems. Journal of Scheduling , 14 , 3–16. doi:10.1007/
s10951-010-0211-z.

Dilkina, B., Khalil, E. B., & Nemhauser, G. L. (2017). Comments on: On learning
and branching: a survey. Top, 25 , 242–246.

Easton, F. F., & Mansour, N. (1999). A distributed genetic algorithm for determin-
istic and stochastic labor scheduling problems. European Journal of Operational
Research, 118 , 505–523. doi:10.1016/s0377-2217(98)00327-0.

Girbea, A., Suciu, C., & Sisak, F. (2011). Constraint based approach for optimized
planning-scheduling problems. Bulletin of the Transilvania University of Brasov.
Engineering Sciences. Series I , 4 , 123.

Glass, C. A., & Knight, R. A. (2010). The nurse rostering problem: A critical
appraisal of the problem structure. European Journal of Operational Research,
202 , 379–389. doi:10.1016/j.ejor.2009.05.046.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning . MIT press.
Gurobi Optimization, I. (2015). Gurobi ip solver, .
Hadwan, M., & Ayob, M. (2010). A constructive shift patterns approach with sim-

ulated annealing for nurse rostering problem. In 2010 International Symposium
on Information Technology (pp. 1–6). volume 1.

Hottung, A., Tanaka, S., & Tierney, K. (2020). Deep learning assisted heuristic
tree search for the container pre-marshalling problem. Computers & Operations
Research, 113 , 104781. doi:10.1016/j.cor.2019.104781.

Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shinogi, T., & Tsuruoka, S. (2001).
Genetic algorithm with the constraints for nurse scheduling problem. In
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546) (pp. 1123–1130 vol. 2). volume 2.

Kazahaya, G. (2005). Harnessing technology to redesign labor cost management
reports: labor costs typically represent over 50 percent of a hospital’s total oper-
ating expenses. can the data management process be harnessed to create mean-
ingful labor cost management tools? Healthcare Financial Management , 59 ,
94–101.

Khalil, E. B., Dilkina, B., Nemhauser, G. L., Ahmed, S., & Shao, Y. (2017).
Learning to run heuristics in tree search. In IJCAI (pp. 659–666).

Khalil, E. B., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016). Learning
to branch in mixed integer programming. In Thirtieth AAAI Conference on

348

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



24 Ziyi Chen et al.

Artificial Intelligence.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 , .
Kool, W., & Welling, M. (2018). Attention solves your tsp. arXiv preprint

arXiv:1803.08475 , .
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