
Local Search Neighborhoods for Industrial Test
Laboratory Scheduling with Flexible Grouping

Florian Mischek1 · Nysret Musliu1 ·
Andrea Schaerf2

Keywords Project Scheduling · RCPSP · Industrial Test Laboratory · Local
Search

1 Introduction

The Test Laboratory Scheduling Problem (TLSP) arises in a real-world indus-
trial test laboratory, where a large number of activities in multiple projects
has to be scheduled, subject to several legal and operational constraints. It is
an extension of the well-known (Multi-Mode) Resource-Constrained Project
Scheduling Problem ((M)RCPSP) (see e.g. [2,5]) which, in addition to other
extensions, includes several unique features.

Most importantly, the activities to be scheduled (jobs) are not monolithic,
but composed of multiple smaller units called tasks and derive all their prop-
erties from the tasks they contain. The grouping of tasks into jobs must be
determined by the solver as part of the solution process. A similar concept ex-
ists in the form of batch scheduling (e.g. [14,12]) or schedule-dependent setup
times (e.g. [8,9]). The difference is that in these settings, tasks are scheduled
directly and batches arise implicitly from the final schedule.

TLSP also uses heterogeneous resources, with general restrictions on which
units of a resource can be used for each task. While usually, variants of RCP-
SPS assume a homogeneous resource model, similar restrictions can be found
in the Multi-Skill RCPSP (MSPSP) [1], where each resource unit possesses a
set of skills and requirements are also formulated in terms of skills.

1 Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning
and Scheduling
DBAI, TU Wien
E-mail: {fmischek,musliu}@dbai.tuwien.ac.at
2 University of Udine
E-mail: schaerf@uniud.it

311

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



Mischek, Musliu and Schaerf

Finally, TLSP introduces the notion of linked tasks, which have to be per-
formed by the same employees. To the best of our knowledge, no other pub-
lished variant of TLSP contains a similar concept. The only reasonable close
approximation can be found in [13], where (some) resource assignments are
modeled as different modes and some activities are constrained to be per-
formed in the same mode.

Previous solution approaches have focused on a subproblem of TLSP, where
a suitable grouping of tasks into jobs is given as input and cannot be modified
by the solver (TLSP-S) [11,4]. However, such a ”known-good” grouping cannot
always be provided, and simple greedy grouping approaches often result in
inferior or even infeasible groupings.

In this extended abstract, we extend the metaheuristic algorithms from
[11] by new neighborhoods that deal with the grouping of tasks into jobs.
This way, we obtain a solution approach for TLSP that does not require a
provided initial grouping. We show that using Simulated Annealing (SA) with
these new neighborhoods, we can quickly create high-quality schedules even
for large instances. Preliminary results indicate that this approach produces
better results than both SA for TLSP-S (even considering that the latter has
the advantage of knowing a good grouping from the start). It also outperforms
other solution approaches for TLSP, including an exact Constraint Program-
ming (CP) model and, under tight time limits, a Very Large Neighborhood
Search (VLNS)[3].

2 Problem definition

TLSP was first defined in a technical report [10], which also contains the full
problem description. We provide here a summary of the main properties and
constraints.

In TLSP, the solver has to find a schedule which consists of a partitioning
of the tasks into jobs, and an assignment of a mode, timeslot and resources
for each job.

A job derives its properties from the tasks it contains, which must all come
from the same project and family. Within a job, tasks are executed sequentially,
but without any defined order. This implies that it must fulfill all requirements
of each task for its whole duration, which is the sum of the durations of its
tasks plus an additional setup time. For example, the set of available units of
each resource is the intersection of the available units of each contained task.

Feasible schedules must satisfy a number of constraints. This includes re-
lease dates and deadlines, available resources, linked tasks (and jobs), prece-
dence constraints, fixed assignments, and others.

The quality of a schedule is determined via an objective function that is
the weighted sum of several criteria, such as the number of jobs, the total
completion time from the start to the end of each project, the number of em-
ployees assigned to each project, preferred employee assignments and internal
target dates, which are usually slightly before the actual deadline.

312

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



LS Neighborhoods for TLSP with flexible grouping

3 Local Search framework

In this section, we give an overview of the local search framework and the
Simulated Annealing (SA) metaheuristic described in [11], where it was used
to solve TLSP-S.

The main concept of the framework is that of neighborhoods, which provide
various methods to access the moves they contain. Solver implementations,
such as metaheuristics, can be easily implemented and adapted for different
problem variants simply by setting the neighborhoods they operate on.

In [11], we implemented different neighborhoods for TLSP-S. One of the
best performing configurations was a combination of two neighborhoods, called
JobOpt and EquipmentChange. JobOpt contains moves that modify the mode,
timeslot, workbench and employee assignments of a single job, while Equip-
mentChange contains moves that replace a single assigned equipment unit by
a different one. This special handling for equipment was required due to the
sometimes huge number of potential equipment assignments, which made a
neighborhood that simultaneously swapped all resources unwieldy in practice.

From among several different well known metaheuristics we implemented
for our framework, we achieved the best results for TLSP-S with Simulated
Annealing (SA) [7].

4 New neighborhoods

The adaptation required to make the solver for TLSP-S described in the pre-
vious section also suitable for TLSP is the introduction of new neighborhoods
that contain regrouping moves, together with a careful reconfiguration of the
search algorithm. If these neighborhoods are combined with those for TLSP-S
[11], the same search algorithm can be used to solve also instances for TLSP.

The main challenge presenting itself is the number of potential partitions
for the tasks in a family, which grows exponentially with the size of the family
(already 115975 combinations for 10 tasks, which is met or exceeded by 6% of
all families in our data sets). Moreover, many of these groupings (in particular
if the tasks are short) will result in identical or nearly identical jobs.

We developed three new neighborhoods that modify the task grouping of a
project in different ways. In combination with the existing neighborhoods for
TLSP-S (JobOpt and EquipmentChange), which deal with mode, timeslot and
resource assignments, these form a complete and efficient set of neighborhoods
for TLSP.

All three new neighborhoods are implemented in such a way as to guarantee
that their moves do not result in any new hard constraint violations, except
for constraint H8 (Single Assignment) and H11 (Linked Jobs), where conflicts
are allowed. This entails the following general restrictions on moves:

– Whenever two existing jobs are involved, they must belong to the same
project and family.

– Fixed tasks cannot be moved to a different job.

313

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



Mischek, Musliu and Schaerf

– Whenever one or multiple tasks are added to an existing job, its mode and
resource assignments must be available for all added tasks.

– In addition to the above point, there must also be a valid timeslot assign-
ment for the job, respecting both time windows (which may changed due
to the added tasks) and precedence constraints. In particular, moving tasks
must not result in cycles in the precedence graph.

The new neighborhoods are:

Single Task Transfer: A single task from a source job is moved to a target job.
Resource assignments are kept as-is, except where requirements change.
In this case, resource assignments are adjusted as necessary. Mode and
timeslot assignments are not modified (only exception: the target job may
by moved to an earlier timeslot if necessary to fulfill due date or precedence
constraints).

Split Job: A job is split in two by moving a randomly selected subset of tasks
to a new job. It is guaranteed that doing so does not introduce cycles
in the dependency graph and each job receives at least one task. For the
mode, timeslot and resource assignments of the new job, several strategies
are possible (see below). Resource assignments of the source job may be
adjusted as described above.

Merge Job: All tasks of a job are moved to another job and the source is
deleted. As for the transfer, resource assignments and timeslot of the target
may have to be adjusted, but are otherwise kept as-is.

We have implemented different strategies to adjust resource assignments
for affected jobs, if the requirements change due to a move (if tasks are added
or removed, requirements can only increase or decrease, respectively). The
resource units to add/remove can be chosen either randomly from all available
units or the best units can be chosen - i.e. those that minimize the conflicts
involving the job.

For the newly created job in the Split Job neighborhood, which does not
have any initial assignments, different options are available. The timeslot can
be either directly after the end of the source, chosen randomly (within time
window and respecting precedence constraints) or the position that minimizes
conflicts. The resource assignments can be copied from the source (and ad-
justed using either of the above strategies), assigned randomly or chosen such
that they minimize conflicts in the selected position.

5 Preliminary Results

For our experiments, we used the same solver implementation as in [11], with
the addition of the three new neighborhoods. We used SMAC3 [6], version
0.11.0, to tune the following configuration parameters (six independent param-
eters in total): The selection probabilities for the five neighborhoods during
each step and the strategies to adjust resource assignments or handle assign-
ments for the newly created job in the Split Job neighborhood.

314

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



LS Neighborhoods for TLSP with flexible grouping

The benchmark data set is the same as the one used in [11], which can be
downloaded at https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/. It
contains 30 randomly generated instances, ranging in size from 5 projects and
around 30 tasks up to 90 projects and over 1500 tasks, as well as 3 anonymized
real-world instances from our industrial partner.

Our results show that with a timeout of 10 minutes, feasible solutions
could be found for all instances in nearly all runs, starting out from a simple
greedily constructed initial grouping. All neighborhoods contributed to finding
feasible solutions. Omitting any single neighborhoods led to a strong decrease
in the number of feasible solutions, despite low weights for the Split and Merge
neighborhoods in the best configuration found by SMAC.

We also compared our results to those for TLSP-S, using the algorithm and
neighborhoods reported in [11]: On average, results for TLSP are better on 19
of the 33 instances, despite the fact that we did not start out from a known
good and guaranteed to be feasible grouping. For some instances, we could
even generate schedules that are better than the proven optima for TLSP-S
under the previously known fixed grouping.

Our results also improve upon those achieved using an exact CP model
for TLSP written in MiniZinc. In particular for instances with 20 projects or
more, SA always found better solutions, with up to half the penalty of the
results using CP.

In comparison with VLNS [3] using the CP model internally, SA finds
competitive results overall. As for CP, the relative performance of SA is better
on larger instances, where it slightly outperforms VLNS.

Results for longer timeouts of two hours indicate similar findings.

6 Conclusions

We have developed three new local search neighborhoods that contain task
(re)grouping moves for TLSP. They can be used in combination with existing
neighborhoods for mode, timeslot and resource assignments to solve the full
TLSP, without any known initial grouping.

With our local search solver using simulated annealing, we could create
high-quality schedules, that show improvements compared to TLSP-S, which
starts out from a known good grouping. This approach also outperforms a CP
model for TLSP on most instances, and is significantly better on all instances
with more than 20 projects. On these large instances, it is also slightly better
than a VLNS approach, while remaining competitive on the smaller instances.

For the future, we aim to perform extensive evaluations of our algorithms
and their performance, and further improve the task grouping operators. We
also plan to investigate other solution approaches for TLSP, such as hyper-
heuristics.

315

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



Mischek, Musliu and Schaerf

Acknowledgements The financial support by the Austrian Federal Ministry for Digital
and Economic Affairs and the National Foundation for Research, Technology and Develop-
ment is gratefully acknowledged.

References

1. Bellenguez, O., Néron, E.: Lower bounds for the multi-skill project scheduling problem
with hierarchical levels of skills. In: E. Burke, M. Trick (eds.) Practice and Theory of
Automated Timetabling V, pp. 229–243. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005). DOI 10.1007/11593577\ 14

2. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: Notation, classification, models, and methods. European Jour-
nal of Operational Research 112(1), 3 – 41 (1999). DOI https://doi.org/10.1016/
S0377-2217(98)00204-5. URL http://www.sciencedirect.com/science/article/pii/

S0377221798002045

3. Danzinger, P., Geibinger, T., Mischek, F., Musliu, N.: Solving the test laboratory
scheduling problem with variable task grouping. In: submitted to Internation Con-
ference on Planning and Scheduling (ICAPS) 2020

4. Geibinger, T., Mischek, F., Musliu, N.: Investigating constraint programming for real
world industrial test laboratory scheduling. In: Proceedings of the Sixteenth Interna-
tional Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research (CPAIOR 2019) (2019)

5. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research
207(1), 1 – 14 (2010). DOI https://doi.org/10.1016/j.ejor.2009.11.005. URL http:

//www.sciencedirect.com/science/article/pii/S0377221709008558

6. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for gen-
eral algorithm configuration. In: International Conference on Learning and Intelligent
Optimization, pp. 507–523. Springer (2011)

7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983). DOI 10.1126/science.220.4598.671. URL https:

//science.sciencemag.org/content/220/4598/671

8. Mika, M., Waligóra, G., Wȩglarz, J.: Modelling setup times in project scheduling. Per-
spectives in modern project scheduling pp. 131–163 (2006)

9. Mika, M., Waligóra, G., Wȩglarz, J.: Tabu search for multi-mode resource-constrained
project scheduling with schedule-dependent setup times. European Journal of Opera-
tional Research 187(3), 1238 – 1250 (2008). DOI https://doi.org/10.1016/j.ejor.2006.06.
069. URL http://www.sciencedirect.com/science/article/pii/S0377221706008344

10. Mischek, F., Musliu, N.: The test laboratory scheduling problem. Technical report,
Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning
and Scheduling, TU Wien, CD-TR 2018/1 (2018)

11. Mischek, F., Musliu, N.: A local search framework for industrial test laboratory
scheduling. Annals of Operations Research 302, 533–562 (2021). DOI 10.1007/
s10479-021-04007-1

12. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European Jour-
nal of Operational Research 120(2), 228 – 249 (2000). DOI https://doi.org/10.1016/
S0377-2217(99)00153-8. URL http://www.sciencedirect.com/science/article/pii/

S0377221799001538

13. Salewski, F., Schirmer, A., Drexl, A.: Project scheduling under resource and mode
identity constraints: Model, complexity, methods, and application. European Jour-
nal of Operational Research 102(1), 88 – 110 (1997). DOI https://doi.org/10.1016/
S0377-2217(96)00219-6. URL http://www.sciencedirect.com/science/article/pii/

S0377221796002196

14. Schwindt, C., Trautmann, N.: Batch scheduling in process industries: an application of
resource–constrained project scheduling. OR-Spektrum 22(4), 501–524 (2000)

316

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II


