304

A simulated annealing approach for the tourist trip
design problem with the pattern sequence of the
points of interest

Vigan Abdurrahmani - Kadri Sylejmani -
Lule Ahmedi

1 Introduction

The Tourist Trip Design Problem (TTDP) [2] is about planning the trip
itinerary for a tourist, when he/she visits a particular place (e.g. a city) for
a certain period of time (e.g. couple of days). It is assumed that the place
comprises of a number of Points of Interest (POIs), and the satisfaction fac-
tor of the tourist for each of the POIs is a known figure, whereas, each POI
is characterized with its own attributes (e.g. opening hours, visit duration,
cost of visit, specific types/categories, etc.). In addition, the tourist can en-
force constraints, such as amount of money to spent on the trip and maximum
number of POIs of certain type/category to visit. In this abstract, we present
an extended variant of the TTDP problem, where we allow the tourist to ex-
press patterns of the visits to the POlIs, in terms of having a certain number
of types of POls visited in a predefined sequence. For example, if the tourist
has selected the pattern monument-castle-museum, for his/her first day of the
tour, then the plan should have at least one monument, one castle and one
museum included into the itinerary. Moreover, the specified POIs should be
planned in the given sequence, although other ones, of any given type, can
be inserted in-between. Our approach for tackling this newly defined variant

V. Abdurrahmani

Faculty of Electrical and Computer Engineering, University of Prishtina, Bregu i Diellit p.n.
Tel.: +-383-38-554896

E-mail: vigan.abdurrahmani@uni-pr.edu

M K. Sylejmani

Faculty of Electrical and Computer Engineering, University of Prishtina, Bregu i Diellit p.n.
Tel.: 4-383-38-554896

E-mail: kadri.sylejmani@uni-pr.edu

L. Ahmedi

Faculty of Electrical and Computer Engineering, University of Prishtina, Bregu i Diellit p.n.
Tel.: 4-383-38-554896

E-mail: lule.ahmedi@uni-pr.edu

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume Il

305

Vigan Abdurrahmani et al.

of TTDP problem is based on the simulated annealing meta-heuristic and it
utilizes the concept of POI pivoting for construction of good starting solutions.

2 Modeling the Tourist Trip Design Problem

In the literature, the TTDP problem is mostly modeled based on the Orien-
teering Problem (OP) [5] and its derived variants. In the OP, during a single
and limited period of time, among a given number of points, a subset of them
has to be visited, with the objective of selecting points whose total satisfac-
tion factor is maximized. The Team OP (TOP)[1] enables multiple periods
(e.g. days), whereas OP with Time Windows (OPTW) allows modeling ser-
vice periods (e.g. opening hours) of points. Further, Time Dependent TOP
(TDTOP)[3] makes it possible to consider variability within the distances be-
tween the points (e.g. walking or traveling by public transport). The Multi
Constrained TOPTW (MCTOPTW)[8] problem represents a specific variant,
where it is possible to express certain additional knapsack constraints, such as
limiting the total cost to spent for visiting points, or enforcing upper limits
about the number of points of certain category that can be visited (e.g. at most
three points of the category of architecture). Furthermore, Multi Constrained
Multiple TOPTW (MCMTOPTW)[9] is used to model multiple periods for
multiple users (e.g. multiple day trips for multiple tourists), where each user
gets its personalized itinerary, which, at certain points can overlap, hence al-
lowing them to be together for some part of the trip. For an extensive study
of the existing variants of OP and the respective approaches used for solving
them, the reader is referred to Gunawan et al. [6].

In this paper, we define a new model, tagged as MCTOPTW with Patterns
(MCTOPTWP), which enables adding an additional hard constraint that en-
forces the presence of a pattern in the form of a predefined sequence of points
within each period of the itinerary. This model will allow the tourist to make
certain types/categories of POIs as mandatory to be included into the itinerary
[4], and moreover, the order of visits to such types/categories is enforced.

3 Problem Formulation

In more specific terms, the MCTOPTWP problem consists of the following
inputs:
Number of tours. The total number of visiting periods (e.g. days).
Budget. The whole budget available for all tours.
Points of interest (POI). These are locations described by geographic
coordinates (latitude and longitude), visit duration, satisfaction score, open-
ing and closing time of the location, cost of the visit and the category of
the location (might contain multiple categories).
Max allowed visits per category. This represents maximum number of
visits per category type of POI for the tour, example Museum: 3 would
allow us to visit at most 3 museums during our tour.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume Il

306

Simulated annealing for tourist trip design problem

Patterns. Patterns represent sequence of categories of POIs that should
be visited, for example a pattern could consist of the following: Museum,
Castle, Natural Park.

In our problem there are no soft constraints and all hard constraints must
be satisfied in order to have a valid solution. The problem is defined by the
hard constraints depicted below:

Visit once. Each POI could be visited at most once during the whole tour
no matter in which day.

Time window. A POI cannot be visited before it’s opening time or after
it’s closing time, however a visit could last after it’s closing time if the visit
starts before closing time.

Day duration. During each day of the tour we cannot exceed the duration
defined by opening and closing time of starting POI.

Starting POI. Each daily visit should start from the first POI and end
up at same POI.

No simultaneous visits to POIs. During each visit we can visit at most
one location at a time.

Budget limit. Total cost of all days should not exceed the input budget.
Max visit per category. During the whole tour we should not visit more
POIs of specific category than the defined number in input.

Pattern sequence. It is important that every day should fulfill its cat-
egory pattern (sequence) and respect its POI order, although other POIs
(of any category) could be visited in between. For example if we have the
pattern Museum, Castle, Natural Park for a specific day, during that day
we could visit POIs of categories Museum, Castle, Seaside, Natural Park.
Note that Seaside category is not part of the pattern, still it can be visited,
since the required order (in the pattern) Museum, Castle and Natural Park
is maintained.

Travel duration. During the visit we should calculate also the travel
duration from one POI to another. The duration is calculated as Euclidean
distance between the geographic locations of any two POlIs.

The objective function of the problem is maximizing the total satisfaction
score of the tour which consists of sum of the satisfaction scores of each visited
POI. We can increase this score by visiting as much POIs as we can while
respecting hard constraints and reducing the waiting time between consecutive
visits.

4 Search Method

The search method is based on the Simulated Annealing (SA) approach as
presented in Algorithm 1. In abstract terms, the proposed approach can be
described as in the following;:

Search Space. The search space consists of the combinations that allocate
all POIs into one of the two subsets. The first one makes the assigned

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume Il

307

Vigan Abdurrahmani et al.

subset, which represents a sequence of POIs (i.e. that make the tourist
itinerary), whilst the second subset contains the unassigned POIs (i.e. those
that do not get placed into the tourist itinerary). The states that violate
the hard constraints are excluded from the search space.

Neighborhood Structure. The neighborhood structure consists of the
union of three basic moves:

Insert: Inserts a POI from a unassigned subset into the assigned subset

Remove: Removes a POI from the assigned subset and places it into

the unassigned subset, and

Swap: Swaps two POIs between the assigned and unassigned subsets.
In the course of a given iteration, we select a non-pivot POI that is within
the itinerary and takes up the larges amount of time, then we replace it
with one of the POIs outside of the itinerary. The replacement policy is
based on the heuristic that tends to chose POIs of types that are less
represented into the itinerary and have high satisfaction factors. After the
swap move, we successively apply the insert move aiming to fill empty
spaces that might have appeared. Whenever a certain POI is subject to a
move, than all the following POIs are shifted forward or backward in time
(in the respective itinerary of the affected day) to reflect the changes that
occurs due to the process of moving the POI.

Cooling Strategy. The cooling strategy is based on the function defined by
Lundy and Mees [7] that is expressed by equation Ty = Ty —1/(1+8T—1). A
low value of 8 parameter (typically close to zero) makes the temperature
change at a slow rate, hence making the algorithm do more exploration
into the search space.

Stopping Criterion. The stopping criterion of the algorithm is determined
by the minimal temperature parameter, which in this case is set to zero.
Initial Solution.The initial solution is constructed based on two phases, the
first adding greediness and the second adding randomness attributes to the
initial solution. The first phase uses the so called concept of pivoting, where
some selected pivot POIs are placed first into the itinerary. For a given
day, for each type in the pattern sequence, we make a group of POIs that
belong to that specific type, and then we order them (in decreasing mode)
based on their satisfaction factor. The POI with the highest satisfaction
factor, in a given group, is selected first to act as a pivot POI, hence it
will be the first to be considered for insertion into the itinerary of that
given day. In case, the first POI does not meet the hard constraints, then
the process of selection of a pivot POI is repeated for other candidates in
the corresponding group, by using a backtracking strategy. In the second
phase, the remaining places are filled randomly with other POIs that are

not part of the itinerary yet.

Perturbation. The perturbation mechanism uses all of the three moves in
a sequence and it is applied only when a number of iterations without
improvement are passed (as defined by MAX_ITERS parameter). First, it
removes randomly a number (as specified by MAX_DEL parameter) of non-
pivot POIs from the itinerary. Then, it makes a number (that is selected

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume Il

308

Simulated annealing for tourist trip design problem

at random between MIN_TRIES and MAX_MAX) of consecutive swaps
between pivot POIs within itinerary and pivot POIs outside of the itinerary.
Finally, it makes several attempts (as specified by MAX_INS parameter)
to randomly insert unassigned POIs into the itinerary.

Algorithm 1 Simulated Annealing

1: procedure SOLVE(input, Tmin, Tmaz, 3, MAX_ITERS, MAX_DEL, MIN_TRIES,
MAX_TRIES, MAX_INS)

2 S, @, P + generatelnitialSol(input) // S - solution, Q - unassigned, P - pivots

3 best + S, t <+ Tmaz,1+ 0

4: while ¢ > T, do

5: a <+ findPoiWithHighestSpace(S)

6

7

8

if a is pivot then
1< MAX_ITERS

: else

9: Q « sort(Q)

10: for b in @ do

11: R < clone(S)

12: type < selectTypeByPolicy(b)

13: if swap(a, b, type, R) then

14: inserted < fillEmptySpaces(R, Q)
15: if eval(R) > eval(S) or ew > random|0, 1] then
16: S+ R

17: remove(inserted, @), remove(b, Q)
18: add(a, Q)

19: end if

20: if eval(S) > eval(best) then

21: best < S,1+ 0

22: else
23: i1+ 1
24: end if
25: else
26: 14— 1+ 1
27: end if
28: end for
29: end if
30: if i > MAX_ITERS then
31: randomRemove(S, Q, P, MAX_DEL)
32: swapPivot(S, Q, P, MIN_.TRIES, MAX_TRIES)
33: randomInsert (.S, Q, MAX_INS)
34: 10
35: end if
36 t=t/(1+ Bt)
37: end while
38: return best

39: end procedure

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume Il

309

Vigan Abdurrahmani et al.

Table 1 Comparison of the results of simulated annealing against Iterated Local Search

approach
Iterated Local Search (ILS) Simulated Annealing (SA)

Instance Time (sec) Fitness (best) Time (sec) Fitness (best) Fitness (avg) ILS vs. SA (%)
MCTOPTWP-1-pro4 0.49 433 2.21 369 306.9 14.8
MCTOPTWP-1-¢105 0.08 314 2.08 330 305.0 -5.1
MCTOPTWP-2-c108 0.25 654 1.08 570 496.0 12.8
MCTOPTWP-2-pr07 0.27 540 1.81 513 435.1 5.0
MCTOPTWP-2-pr08 0.96 764 2.94 655 546.1 14.3
MCTOPTWP-3-pr01 0.19 586 1.25 550 490.0 6.1
MCTOPTWP-3-pr09 2.82 1133 2.45 838 679.5 26.0
MCTOPTWP-3-c107 0.29 861 1.40 800 721.0 7.1
MCTOPTWP-4-r111 0.61 858 0.94 728 633.9 15.2
MCTOPTWP-4-pr04 1.86 1464 4.30 1120 920.5 23.5
5 Results

The above described model is tested by using a test set of ten instances that
are derived based on a large instance set in the literature. Further, the results
of our approach ! are compared against the Iterated Local Search approach
of [10] for the TOPTW, but which we adopted for the new model presented
in this paper (i.e. MCTOPTWP). The adopted ILS solver can be obtained
in GitHub 2. As it can be seen in Table 1, in terms of fitness, in one (out of
ten) instances our algorithm performs better than the ILS approach, and, in
average, our algorithm falls behind the ILS for about 12% . In addition, in
terms of computation time, our approach has an average computation time of
2.04 sec, while the ILS approach takes, in average 0.78 sec.

6 Conclusion and Future Work

The results presented above show that our approach is quite quick as it is able
to produce good solutions in a matter of few seconds, which makes it suitable
for use in practical applications. As part of future work, new neighborhood
operators will be developed and the algorithm will be tested against a greater
set of instances that are derived from the existing test in the literature.

Acknowledgements We thank Bsc. Festim Prebreza for implementing, from scratch, the
state of the art algorithm ILS[10], who made it possible for us to have reference results for
comparison purposes.

References

1. I-Ming Chao, Bruce L. Golden, and Edward A Wasil. The team orienteering problem.
European journal of operational research, 88(3):464-474, 1996.

1 GitHub https://github.com/vigan-abd/mctopp
2 GitHub https://github.com/festimprebreza/iteratedLocalSearch

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume Il

310

Simulated annealing for tourist trip design problem

2. Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas, and Gram-
mati Pantziou. A survey on algorithmic approaches for solving tourist trip design
problems. Journal of Heuristics, 20(3):291-328, 2014.

3. Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas, Grammati
Pantziou, and Nikolaos Vathis. Heuristics for the time dependent team orienteering
problem: Application to tourist route planning. Computers € Operations Research,
62:36-50, 2015.

4. Michel Gendreau, Gilbert Laporte, and Frederic Semet. A branch-and-cut algorithm
for the undirected selective traveling salesman problem. Networks: An International
Journal, 32(4):263-273, 1998.

5. Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval
Research Logistics (NRL), 34(3):307-318, 1987.

6. Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Orienteering problem:
A survey of recent variants, solution approaches and applications. European Journal of
Operational Research, 255(2):315-332, 2016.

7. Miranda Lundy and Alistair Mees. Convergence of an annealing algorithm. Mathemat-
ical programming, 34(1):111-124, 1986.

8. Kadri Sylejmani, Jiirgen Dorn, and Nysret Musliu. A tabu search approach for multi
constrained team orienteering problem and its application in touristic trip planning. In
2012 12th International Conference on Hybrid Intelligent Systems (HIS), pages 300—
305. IEEE, 2012.

9. Kadri Sylejmani, Jiirgen Dorn, and Nysret Musliu. Planning the trip itinerary for tourist
groups. Information Technology & Tourism, 17(3):275-314, 2017.

10. Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van Oud-
heusden. Iterated local search for the team orienteering problem with time windows.
Computers & Operations Research, 36(12):3281-3290, 20009.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume Il

	Introduction
	Modeling the Tourist Trip Design Problem
	Problem Formulation
	Search Method
	Results
	Conclusion and Future Work

