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1. Introduction  

Orienteering Problem (OP) is an NP-hard vehicle routing problem that combines two 

classical combinatorial optimization problems, the Traveling Salesman Problem (TSP) and 

the Knapsack Problem (Vansteenwegen et al., 2011).  The objective of the problem is to 

select the most profitable combination of customers from a list of potential customers given 

that the selected customers do not violate the time constraints (Gunawan et al. 2016). OP 

was first introduced by Golden et al. (1987) and since then, the problem has received a 

considerable amount of attention by researchers in the past few decades. The survey papers 

published by Vansteenwegen et al. (2011) and Gunawan et al. (2016) provided an extensive 

summary of the range of research works done on OP and its variant from the time of 

introduction of the OP to as recent as 2016.  

Team Orienteering Problem (TOP) is one main variant of the original OP. The objective of 

TOP is to select the most profitable combination of customers for a fleet of vehicles from 

a list of potential customers, given that the selected customers do not violate the time 

constraints. The concept of TOP was first introduced by Butt and Cavalier (1994), who 

named it the Multiple Tour Maximum Collection Problem, and Chao et al. (1996) came up 

with the term TOP, which is widely used by researchers around the world currently.  

In this paper, we focus on another variant of the OP, namely the Capacitated Team 

Orienteering Problem. CTOP considers each vehicle to have a limited capacity and each 

customer is associated with a demand for capacity. The objective of the CTOP is to 

optimize the profit generated for the fleet of vehicles by choosing customers with the 

consideration of each customer’s demand and profit. The concept was first introduced by 

Archetti et al. (2009) and it has great practical usage in the logistics industry. Many of the 

logistics companies are now facing international competition, which forces them to cut 

costs in order to survive in this competitive market. One of the ways to cut cost is to 

maximise the number of goods each vehicle can hold. However, the survey papers 

conducted by Vansteenwegen et al. (2011) and Gunawan et al. (2016) showed that only 

few research works have been done on this particular topic. Therefore, this paper aims to 

contribute to the research on CTOP by providing a heuristic approach that can generate a 

good quality solution efficiently.  

Archetti et al. (2009) proposed an exact approach and three heuristic approaches to solve 

this problem. The exact approach is based on the branch-and-price algorithm. The three 

heuristic approaches comprise of Variable Neighbourhood Search (VNS) algorithm and 

Tabu search algorithms. A novel Bi-level Filter-and-Fan method is proposed by Tarantilis 
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(2013). The proposed method consists of three components: a greedy parallel insertion-

based construction heuristic to generate an initial feasible solution; a new Tabu Search 

based local search to identify a local optimal solution, and a novel filter-and-fan search to 

explore larger combined neighbourhoods and generate multiple search trajectories in an 

effort to overcome local optimality. The algorithm was able to match and improve some of 

the best reported results with competitive computational time. Luo et al. (2013) introduced 

an approach using an adaptive Ejection Pool (EP) with toggle-rule diversification. The 

proposed algorithm maintains the current solution in two parts: the first part consists of the 

selected customers and the second part consists of all the potential customers that are 

currently not selected. The potential customers are arranged based on their value, with the 

first one being the most valuable customer. Priority is given to the first potential customer 

if a replacement is to be made between the selected customer and potential customers. 

Another heuristic algorithm proposed is the Adaptive Iterative Destruction/Construction 

Heuristic (AIDCH) (Ben-Said et al., 2016). This algorithm starts with an adaptive 

construction phase based on the Best Insertion Algorithm, followed by an adaptive 

diversification phase with local search methodologies. A recent research work on CTOP 

was published by Gunawan et al. (2019), which proposed a heuristic algorithm based on 

the Iterated Local Search (ILS). This algorithm comprises of 4 main modules: initial 

solution, local search, perturbation and acceptance. The algorithm produced promising 

results as compared to other heuristic algorithms proposed previously.  

2. Proposed Algorithm 

We propose a heuristic which is inspired by the Simulated Annealing and Iterated Local 

Search (SAILS) algorithm (Gunawan et al., 2017). The entire algorithm is illustrated in 

Figure 1. The Simulated Annealing (SA) portion of the proposed algorithm is further 

modified by adapting the SA process proposed by Lin and Yu (2015) with a few minor 

adjustments. The first adjustment is done after generating the initial solution, with the 

addition of local search first before entering the looping process. The addition of an extra 

local search right after initial solution improves the efficiency of the algorithm by starting 

off the looping process with a much better initial condition (Gunawan et al., 2019). The 

second adjustment is done at the generation of the solution based on a previous solution 

through exploring the neighbourhood. The original SA process introduced by Lin and Yu 

(2015) has 3 types of iterators for exploring the neighbourhood, namely Swap, Insert 

and Reverse, each with a probability of 1/3 being chosen. Since Insertion will be 

performed exhaustively in the local search step, Insert is removed from this step for the 

proposed algorithm. More details of the operators will be explained below. 

The Random Walk acceptance criterion (Vansteenwegen, 2014) is adapted for the proposed 

algorithm. This acceptance criterion provides a good balance between intensification and 

diversification when searching for solutions. Local search operators adapted from ILS 

(Gunawan et al., 2017) ensure that only solutions that are better than the current solution 

are kept, leading to search intensification. Random neighbourhood search with SA process 

allows the algorithm to explore neighbouring solution and have chance to escape local 

optima, leading to search diversification. 

The algorithm starts off by first generating the initial solution 𝑋. The current temperature 

𝑇 is also set to the initial temperature 𝑇𝑚𝑎𝑥.  The algorithm then performs a round of local 

search on 𝑋 to improve the initial solution, and the best-found solution F(𝑍) is updated to 

𝐹(𝑋). Upon completion of the neighbourhood search, a new solution, 𝑌, is found and the 

objective value of 𝑌, 𝐹(𝑌), is compared against the objective value of 𝑋, 𝐹(𝑋). If 𝐹(𝑌) is 

better or equal to 𝐹(𝑋), then 𝑋 is replaced by 𝑌. However, if 𝐹(𝑌) is worse than 𝐹(𝑋), 

another random number 𝑟 between 0 and 1 is generated and compared against 𝑒
𝐹(𝑌)−𝐹(𝑋)

𝑇  , 

where 𝑋 is replaced by 𝑌 if 𝑟 < 𝑒
𝐹(𝑌)−𝐹(𝑋)

𝑇 . Furthermore, if 𝐹(𝑌) is better than 𝐹(𝑍), 𝑍 is 

also replaced by 𝑌. The neighbourhood search repeats itself until 𝐼 = 𝐼𝑚𝑎𝑥. 
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Next, the temperature 𝑇 is reduced with the formula 𝑇 = 𝑇 × 𝛼, where 𝛼 is the cooling 

ratio. Local search is performed on 𝑍 to further improve the solution. Now, the algorithm 

performs a check to see if 𝐹(𝑍) is improved after the local search. If 𝐹(𝑍) is improved, 

then 𝑁 = 0, 𝐼 = 0, and the algorithm begins another round of neighbourhood search with 

𝑋 = 𝑍. If 𝐹(𝑍) is not improved, the non-improved count, 𝑁, increases by one and is 

compared against 𝑁𝑚𝑎𝑥. If 𝑁 < 𝑁𝑚𝑎𝑥, 𝐼 = 0 and the algorithm begins another round of 

neighbourhood search with 𝑋 = 𝑍. The algorithm terminates when 𝑁 = 𝑁𝑚𝑎𝑥. 

 

1: Generate Initial Solution  

2: F(Z) Apply Local Search  

3: Set I = 0, N = 0, T = Tmax, F(Z) = F(X*) 

4: while (N < Nmax) do 

5:     while (I < Imax) do 

6:         F(Y)  Neighborhood Search  

7:         I++ 

8:         if (F(Y) > F(X*)) 

9:             F(X*)  F(Y) 

10:       else 

11:           Generate r ~ U(0,1) 

12:           if (r < exp((F(Y) – F(X*)) / T)) 

13:               F(X*) = F(Y) 

14:           else 

15:               return to step 5 

16:           if (F(X*) > F(Z)) 

17:               F(Z) = F(X*) 

18:           else 

19:               Return to step 5 

20:     T = T × α 

21:     F(Z*)  Local Search  

22:     if (F(Z*) > F(Z)) 

23:         N = 0 

24:     else 

25:         N = N + 1 

26:     I = 0; return to step 4 

Figure 1. Proposed Algorithm 

In order to generate the initial solution, we implement the simple insertion heuristic (Luo 

et al., 2013). This method first ranks all the customers based on their potential value. The 

ranked customers are then inserted one by one into the available vehicles starting from the 

highest value customers. The process stops when no more customers can be added into any 

of the vehicles. Since service time is not included into the calculation of the cost for the 

given benchmark instances, the value calculation for the given instance would be:  

𝑣𝑎𝑙𝑢𝑒 =
𝑝𝑟𝑜𝑓𝑖𝑡

𝑑𝑒𝑚𝑎𝑛𝑑
      (1) 

Six different local search operators, as shown in Table 1, were adapted from Gunawan et 

al. (2017). All the six operators are executed in sequence given in Table 1 for every call of 

the neighbourhood search. Swap1 selects the vehicle with the least remaining travel time. 

All possible combinations of exchanging positions between two different customers are 

performed. Swap1 is considered successfully executed only if the exchange increases the 

travel time of the chosen vehicle. Swap2 is similar to Swap1, with the exception of 

selecting two vehicles with the least remaining travel times. All possible combinations of 

exchanging positions of customers between two vehicles are performed. Swap2 is 

considered successfully executed only if the exchange increases the total travel time from 

both vehicles. Both operations terminate when all possible combinations of exchange are 

performed. 

2-Opt is executed by first selecting the vehicle with the least remaining travel time. All 

possible combinations of selecting two different customers are performed, and the 
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sequences of customers between the two selected customers are reversed. Move reallocates 

customers from one vehicle to another, with the objective of reducing total remaining time 

for all vehicles. The reallocation of customers should not violate any constraints and the 

operation terminates when all customers tried reallocating to all locations in all vehicles.  

All the above-mentioned operators do not change the objective function value. They 

modify the current solution in order to increase the total remaining travel time. This may 

provide more opportunities for the next two operators, namely Insert and Replace, to 

improve the objective function value by adding or replacing customers from the group of 

unassigned customers. Insert rearranges all customers that are not assigned to the 

vehicles, based on their values in ascending order. Each unassigned customer would now 

be inserted into the vehicles without violating any constraints. If there are multiple insertion 

locations available for this unassigned customer, the location with the least addition of total 

traveling time will be chosen. Replace replaces customers assigned to vehicles with 

customers that have not been selected. The vehicle with the most remaining travel time is 

chosen for this operation. All unassigned customers are rearranged based on their values. 

The highest-valued unassigned customer is then selected to replace any customer in the 

vehicle that has a value lower than that of the unassigned customer without violating any 

constraints. If there are multiple potential customers in the vehicle that can be replaced by 

the unassigned customer, replace the customer that will result in the least addition of travel 

time. Each time after a successful replacement, rearrangement of the unassigned customers 

will be done and the highest-valued unassigned customer is chosen for the next 

replacement.  

Table 1. Local Search operators 

Operator Definition 

Swap1 Exchange two customers within one vehicle 

Swap2 Exchange two customers between two vehicles 

2-Opt Reverse the sequence of certain customers within a vehicle 

Move Move one customer from one vehicle to another vehicle 

Insert Insert or add customers to a vehicle 

Replace Replace one customer in a vehicle with another customer that has not been selected 

 

3. Computational Results 

The proposed algorithm was implemented in C++ programming language and the 

computational runs were performed on a CPU with MacOS, Intel Core i5 2.7 GHz Dual-

Core processor and 8 GB of RAM. Benchmark instances from Tarantilis (2012) were used 

to test the proposed algorithm. 

The comparison of the results from the proposed solution against other well-known 

algorithms are presented below. The results of the-state-of-the-art algorithms were used to 

compare with the results generated from the proposed algorithm. Here, Variable 

Neighbourhood Search (VNS) and Tabu Search (feasible) (TSf) correspond to the 

algorithms proposed by Archetti et al. (2009); Bi-level Filter-and-Fan Fast (BiF&F-f) 

corresponds to the algorithm proposed by Tarantilis et al. (2012); Iterated Local Search 

(ILS) corresponds to the algorithm proposed by Gunawan et al. (2019). It is observed that 

keeping 𝐼𝑚𝑎𝑥 at 3000, 𝑁𝑚𝑎𝑥 at 10, 𝑇𝑚𝑎𝑥 at 1 and 𝛼 at 0.99 provides the opportunity to 

find most of the best-known solutions (BK) at relatively short run time. Due to space 

constraints, only a summary of the result comparisons is presented in this section. Note that 

“p” refers to the average objective function value and “t(s)” refers to the computation time 

(in seconds). %d refers to the percentage difference between “p” for proposed algorithm 

and “p” for best known solution (BK). 
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Table 2. Computational Results 

Instance 
BK VNS TSf BiF&F-f ILS SA_ILS 

p p t(s) %d p t(s) %d p t(s) %d p t(s) %d p t(s) %d 

Set 1 1814.2 1814.2 0.0 0.00 1814.0 43.3 0.02 1824.0 0.2 -0.34 1814.0 19.0 0.01 1824.0 21.4 -0.32 

Set 2 295.2 294.9 667.1 0.07 295.0 505.9 0.06 295.1 7.9 0.03 292.5 30.0 0.88 293.1 24.1 0.56 

Set 3 728.4 728.4 1028.5 0.00 726.2 388.0 0.29 728.5 6.0 -0.02 727.9 128.4 0.08 725.5 55.6 0.39 

Average 945.9 945.8 565.2 0.03 945.0 312.4 0.12 949.0 4.7 -0.11 944.8 59.2 0.32 947.0 33.7 0.21 

 

As seen from the table above, the proposed algorithm is comparable against the other 

algorithms in terms of quality and computation time. Furthermore, it is also able to improve 

one best-known solution from Set 1 of the benchmark instances. The proposed algorithm’s 

computation time is also shorter as compared to the algorithms VNS, TSf and ILS. 

However, it is worth mentioning that BiF&F-f algorithm is far more superior than all other 

algorithms in both the results and computation time.  

4. Conclusion 

In this paper, Simulated Annealing with Iterated Local Search (ILS) metaheuristic 

algorithm is proposed to solve the Capacitated Team Orienteering Problem (CTOP). It 

combines Simulated Annealing process with ILS operators to enhance the algorithm’s 

diversification and intensification. The algorithm is then used to solve benchmark instances 

and the results are compared against other state-of-the-art algorithms. The proposed 

algorithm displayed good performance that is comparable with other state-of-the-art 

algorithms in both the results and computation time. Furthermore, the relatively simple 

algorithm structure, along with few user-defined parameters, indicates the applicability of 

the proposed approach towards solving other variants of the Orienteering Problems, as well 

as the real-life Orienteering Problems. The results are still preliminary with some future 

research directions, such as developing more local search operators and a more rigorous 

tuning procedure using statistical tests. 
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