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Abstract The vertex colouring problem is one of the most widely studied
and popular problems in graph theory. In light of the recent interest in hybrid
methods involving mathematical programming, this paper presents an attempt
to design a matheuristic approach for the problem. A decomposition-based
approach is introduced which utilizes an integer programming formulation to
solve subproblems to optimality. A detailed study of two different decompo-
sition strategies, vertex-based and colour-based, is discussed. In addition, the
impact of algorithm design parameters on the particular decompositions used
and their influence on final solution quality is also explored.
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1 Introduction

The vertex colouring problem (VCP) seeks to assign colours to vertices of a
graph such that no two adjacent vertices are assigned the same colour. Initially
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studied as a problem on planar graphs, the problem has been generalized over
general graphs and represents a large share of the graph theory literature given
its widespread applications. Problems which can be modeled as the assignment
of conflicting elements of a set to distinct subsets such as scheduling (Leighton,
1979), timetabling (Babaei, Karimpour, and Hadidi, 2015), frequency assign-
ment (Aardal, Van Hoesel, Koster, Mannino, and Sassano, 2007) and register
allocation (Chow and Hennessy, 1990), are some of the major areas where
there exist practical applications of the VCP.

The VCP is an example of a problem which is easy to define, yet difficult to
solve. Determining the smallest number of colours required to colour a graph
is an NP-hard problem (Garey and Johnson, 1979). This inherent difficulty
of the problem means that only certain kinds of graph are capable of being
solved by the best mathematical models formulated for the VCP (Méndez-
Dı́az and Zabala (2006), Méndez-Dı́az and Zabala (2008), Malaguti, Monaci,
and Toth (2011)), thereby motivating the need for efficient heuristic strate-
gies. Decades of research have contributed multiple models and performance
guarantees for the VCP. Despite these achievements, the problem continues
to fascinate researchers in this area due to its theoretical complexity and the
constantly growing number of practical applications that demand colouring
larger graphs.

Malaguti and Toth (2010) provide a useful survey on the various exact and
heuristic algorithms developed for the VCP. Several high performing algo-
rithms for the VCP such as Malaguti, Monaci, and Toth (2008), Funabiki and
Higashino (2000), Galinier and Hao (1999) suggest that hybrid methods are ef-
ficient in colouring some of the very large random graphs. This paper presents
some preliminary experiments conducted in order to test a matheuristic ap-
proach for the VCP. Matheuristics are methods which hybridize mathemati-
cal programming and heuristics. The recent success of matheuristic strategies
in scheduling applications which are, at their most fundamental level, graph
colouring problems has motivated this study.

The outline of the paper is as follows. Section 2 briefly introduces the
problem and the terminology. The matheuristic strategy proposed for the VCP
is introduced in Section 3, while the related experiments are summarized in
Section 4. Section 5 then ends this paper by concluding and offering future
research possibilities.

2 The vertex colouring problem

Let G = (V,E) denote a graph on a finite vertex set V and edge set E, whose
cardinalities are denoted by n and m respectively. In this paper, E is assumed
to be the collection of unordered pairs E = {{v, v′}|v, v′ ∈ V, v 6= v′}, thereby
limiting the problem to finite simple graphs (no loops or multiple edges). A
k-colouring of G is the assignment of k colours to elements of V such that
no two adjacent vertices share the same colour. The smallest k for which a
k-colouring exists for G is defined to be the chromatic number of G, denoted
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by χG. The saturation degree of a vertex is defined as the number of colours
to which it is adjacent.

3 Constructive Matheuristics

The present work applies a decomposition-based approach which utilizes pow-
erful exact techniques to solve subproblems to optimality and thus can be
called a matheuristic (Maniezzo, Stützle, and Voß, 2010). More specifically,
this approach adapts the constructive matheuristic (CMH) strategy introduced
by Smet, Wauters, Mihaylov, and Vanden Berghe (2014). This constructive
heuristic sequentially solves subproblems and utilizes these optimal solutions
to construct a solution for the entire original problem. The subproblems of a
CMH strategy are called blocks.

The following CMH design parameters introduced in Chandrasekharan,
Toffolo, and Wauters (2019) are also tested.

1. Block size (η): This parameter defines the size of subproblems and often
significantly influences algorithmic runtime.

2. Overlap (θ): This parameter allows blocks to share some constraints in-
stead of being completely disjoint. θ denotes the extent of overlap between
consecutive blocks.

3. Relaxed future (ρ): This feature allows the CMH to have larger subprob-
lems by solving a part of the block in a relaxed fashion, which tends to
have less of an impact on algorithmic runtime than increasing block size.
The size of the relaxed part is expressed as percentage (ρ) of the size of
the original block. The relaxed part must be later solved again with the
original formulation to ensure feasibility.

A CMH configuration is therefore represented by the three tuple (η, θ, ρ). Fig-
ure 1 illustrates the overall CMH strategy utilized in this paper and the design
parameters. The CMH approach utilized relaxes one or more constraints of an
IP formulation for the VCP in order to define the decomposition. The sub-
problems generated are then sequentially solved by a MIP solver. Depending
on the solutions of previously solved subproblems, additional constraints may
need to be added to the blocks or objective functions utilized in the blocks
modified to ensure feasibility of the final solution. Given a block b, its defini-
tion and the precise optimization problem it solves is realized by means of its
block objective function Zb(η, θ, ρ).

The CMH strategy utilizes the simple assignment-based IP formulation
(VCP-ASS) of the VCP. Let H denote the set of colours. The algorithm starts
with a total of n colours, |H| = n. Variables xih decide whether colour h is
assigned to vertex i while variables yh decide whether colour h ∈ H is utilized
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previous block

current block η

θ

ρ

Fig. 1: An overview of the general CMH strategy. Blue rectangles represent
subproblems (blocks) in the CMH strategy and the solid window represents
current block. The gray rectangle represents the block previously solved and
the dotted rectangle represents the part of a future unsolved block solved in a
relaxed fashion.

or not.

xih =

{
1 if vertex i ∈ V is assigned to colour h ∈ H
0 otherwise

(1)

yh =

{
1 if colour h ∈ H is used

0 otherwise
(2)

The model can then be formulated as follows:

minimize:

n∑
h=1

yh (3)

subject to:
n∑
h=1

xih = 1 ∀i ∈ V (4)

xih + xjh ≤ yh ∀(i, j) ∈ E, h = 1, . . . , n (5)

yh+1 ≤ yh ∀i = 0, . . . , n− 1 (6)

xih ∈ {0, 1} ∀i ∈ V, h = 1, . . . , n (7)

yh ∈ {0, 1} ∀h = 1, . . . , n (8)

Constraints 4 ensure that vertices are assigned exactly one colour, while Con-
straints 5 prevent adjacent vertices from being assigned the same colour. Con-
straints 6 are introduced to break the symmetry incurred by the interchange-
ability of colours.

The aim is to develop a CMH algorithm for the VCP inspired by the recent
success of CMH techniques for task scheduling problems, as discussed in both
Smet et al. (2014) and Chandrasekharan, Smet, and Wauters (2020). The CMH
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strategy aims to optimally colour subgraphs of G in a sequential fashion by
utilizing their MIP formulations, and then eventually combining them together
into a solution for the entire graph. The two obvious candidates for how to
decompose a graph led to the development of two decomposition strategies:
vertex-based and colour-based CMH strategies.

3.1 Vertex-based CMH

The vertex-based CMH (VBC) defines blocks by way of groups of vertices.
The induced subgraph defined by a block is coloured to optimality by utilizing
its MIP formulation. Once a block is solved, the colour assignments are fixed
and the following blocks are solved such that they do not contradict previously
fixed colour assignments. Let bk denote the current block and Ebk denote the
induced subgraph corresponding to the vertices belonging to blocks b0, . . . , bk.
The MIP formulation solved in block bk can now be formulated as follows.

xih =

{
1 if vertex i ∈ bk is assigned to colour h ∈ H
0 otherwise

(9)

yh =

{
1 if colour h ∈ H is used

0 otherwise
(10)

minimize:
n∑
h=1

yh (11)

subject to:
n∑
h=1

xih = 1 ∀i ∈ bk (12)

xih + xjh ≤ yh ∀(i, j) ∈ Ebk , h = 1, . . . , n (13)

yh+1 ≤ yh ∀h = 0, . . . , n− 1 (14)

xih ∈ {0, 1} ∀i ∈ bk, h = 1, . . . , n (15)

yh ∈ {0, 1} ∀h = 1, . . . , n (16)

3.2 Colour-based CMH

The colour-based CMH (CBC) defines blocks by means of grouping colours.
In each block of colours, the CMH solves for the maximal subgraph that can
be coloured by the colours in the block and fixes those assignments. The CMH
stops when all vertices have been coloured. In contrast with the vertex-based
CMH, the block objective function of the CBC maximizes the number of ver-
tices that can be coloured by the colours in a given block. The following is the
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(a) Vertex-based CMH (b) Colour-based CMH

Fig. 2: The CBC and VBC strategies. Solid rectangles represent blocks. Gray
windows correspond to blocks previously solved, while the dotted rectangles
represent the relaxed future part of the current block.

MIP formulation solved in each block bk:

xih =

{
1 if vertex i ∈ V is assigned to colour h ∈ bk
0 otherwise

(17)

yh =

{
1 if colour h ∈ bk is used

0 otherwise
(18)

The model can then be formulated as:

maximize:
∑
h∈bk

∑
i∈V

xih (19)

subject to: xih + xjh ≤ yh ∀(i, j) ∈ E, h ∈ bk (20)

yh+1 ≤ yh ∀h ∈ {bk0 , . . . , bk|bk|−1
} (21)

xih ∈ {0, 1} ∀i ∈ V, h ∈ bk (22)

yh ∈ {0, 1} ∀h ∈ bk (23)

The final block is re-optimized with the original objective of minimizing the
number of colours. Figure 2 illustrates CBC and VBC strategies.

The proposed CMH strategy falls in the category of successive augmenta-
tion techniques discussed in Johnson, Aragon, McGeoch, and Schevon (1991).
Such techniques begin with a feasible partial colouring of the graph and then
progressively extend it, examples of which include greedy colouring heuristics
such as DSATUR (Brélaz, 1979) and recursive largest first or RLF (Leighton,
1979). DSATUR colours vertices one by one whereas RLF iteratively construct
colour classes - groups of vertices that can be coloured by the same colour.
The general CMH strategy employed in this paper can be interpreted as a gen-
eralization of these classical colouring heuristics. Rather than colouring single
vertices or isolating a single colour class, vertex-based CMH optimally colours

290

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



A constructive matheuristic approach for the vertex colouring problem

subgraphs whereas the colour-based CMH isolates a block of colour classes by
solving for it mathematically. It is worth noting that in case of the colour-
based CMH, subproblems are attempting to generate maximal independent
sets mathematically and therefore might require very long computation times
for certain graph classes, as opposed to RLF where it is done heuristically.

Johnson et al. (1991) and Matula, Marble, and Isaacson (1972) studied the
influence of the order in which vertices are coloured on final solution quality.
Some heuristics utilize a fixed static ordering of vertices, whereas some change
this ordering dynamically as the algorithm proceeds. Among static colourings,
it is proven that the smallest last (SL) ordering yields the best performance
when implemented in a greedy colouring heuristic that colours one vertex
at a time. The random vertex-based CMH (RVC) is produced by adapting a
random order for colouring vertices in the vertex-based CMH. On adapting the
adapting the SL ordering, the SL-based CMH (SLC) is produced. In addition,
another approach called the DSATUR-SL based CMH (DSC) is designed to
utilize a dynamic ordering as in the DSATUR heuristic. In this CMH approach,
the first block is composed of η vertices from the SL ordering. Once this block
is solved, elements of the next block are selected such that it composed of
uncoloured vertices with the first η largest saturation degrees in the partially
coloured graph. Ties are broken utilizing the SL order.

4 Computational Study

Experiments are conducted on four threads of an Intel(R) Xeon(R) CPU E5-
2650 v2 @ 2.60GHz computer running Ubuntu 16.04.2 LTS. The CMH algo-
rithm was coded in Java and used Gurobi 8.1 to solve blocks. The DIMACS10
vertex-colouring benchmark instances were utilized in the computational study
and are available at http://www.cc.gatech.edu/dimacs10/. The benchmark
time limit is considered to be 3600s.

From Table 1 it is clear that VCP-ASS, being the IP formulation, is capable
of solving only 48 instances of the 131 benchmark instances. When the number
of vertices is above 500, the method fails or exhibits poor performance, some-
thing which, again, justifies the need for powerful heuristics. The performance
of CBC and RVC for η = 1 are also summarized for comparison purposes.
Since RVC utilizes a random order of vertices, the results are averaged over
10 runs. Here, one colour or one vertex is considered per block. If the runtime
exceeds the benchmark time limit, the program outputs the number of vertices
(n) as the result. %Gap is calculated with respect to the best known solution
available in the literature for a particular instance. In order to develop an ef-
ficient CMH for the VCP, the impact of CMH design parameters η and θ on
all its variants have been tested.
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Table 1: Performance comparison of baseline algorithms VCP-ASS, CBC and
RVC

VCP-ASS RVC(1,0,0) CBC(1,0,0)
Number of feasible solutions 74 104 116
Number of best known solutions 48 35 45
Average calculation time(s) 2718.36 917.08 569.17
%Gap - average 3100.82 1103.59 521.17

4.1 Colour-based CMH

From Table 1 it is evident that for η = 1, CBC has a better performance
compared to that of the RVC. In general, larger block size is expected to
result in higher solution quality, but also lead to longer runtimes. However,
decreasing the block size too much may lead to too many sub problems and
longer overall set up times. See Table 2 for a summary of the results obtained
by CBC. From the performance of CBC, it is clear that larger block sizes
lead to longer runtimes but this does not correspond to improved solution
quality trends. This can be attributed to the fact that the algorithm might
terminate due to the runtime limit being exceeded for larger block sizes, which
contributes highly to the average %gap. This becomes more evident with the
%gap calculated exclusively for the feasible solutions.

For CBC, the block objective function tries to solve for the largest subgraph
that can be coloured by the elements of the block. The underlying problem
therefore seeks to isolate independent sets in the graph, which can be an NP
hard problem. Since increasing the block size beyond η = 8 may lead to very
long algorithm runtimes, increasing block size further will probably not im-
prove CMH performance. This motivates testing the impact of the overlap
design parameter on the CBC. Surprisingly, overlap feature has a negative
effect on CBC’s performance. Both average algorithm runtime and %gap in-
crease when the overlap feature is introduced. However, when only feasible
solutions are considered there is an improvement concerning the average gap,
indicating that the overlap feature need not necessarily have a negative impact
on CBC’s solution quality and this instead may be attributed to the premature
termination of the algorithm due to the runtime limit being exceeded.

Table 2: Summary of performance details of colour-based CMH strategies

Configuration Average
runtime

Average
%gap

#feasible
solutions

#optimal
solutions

Average
%gap(only

feasible
solutions)

”CBC(1,0,0)” 569.17 521.17 116 45 52.41
”CBC(4,0,0)” 1,694.07 2,806.29 72 41 63.77
”CBC(8,0,0)” 1,839.26 1,247.49 86 51 57.85

”CBC(4,50,0)” 2,129.31 3,490.89 52 14 48.79
”CBC(8,50,0)” 1,842.23 2,102.66 65 20 39.46
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4.2 Vertex-based CMH

The performance of various vertex-based approaches is summarized in Table
3. In case of RVC, performance trends are rather irregular, with RVC(20,0,0)
exhibiting the best performance when θ = 0. In contrast to that of CBC,
it is evident that overlap feature can be employed in the RVC to produce
more feasible solutions. The overall average gap still remains high whereas the
average gap calculated only over the feasible solutions decreases. This could
be due to the large RVC runtimes as a result of implementing overlap. In case
of exceeding runtime limit, the CMH terminates and returns the number of
vertices (n) as the result. Therefore, a subset S of 95 instances on which all
vertex-based CMH strategies produce feasible solutions has been constructed
in order to make a fair comparison between their performances.

Table 3: Summary of performance details of various vertex-based CMH strate-
gies

Configuration Average
runtime

Average
%gap

#feasible
solutions

#optimal
solutions

Average
%gap(only

feasible
solutions)

Average
%gap(over

S)

”RVC(1,0,0)” 917.08 1,103.59 104 35 34.45 35.41
”RVC(10,0,0)” 797.95 1,029.42 109 31 34.68 35.65
”RVC(20,0,0)” 767.18 1,142.73 107 38 34.02 34.35

”RVC(10,50,0)” 954.28 1,105.3 104 38 36.6 36.95
”RVC(20,50,0)” 913.79 1,103.09 104 37 33.82 34.8

”SLC(1,0,0)” 973.73 595.88 108 49 27.18 26.47
”SLC(10,0,0)” 703.43 879.43 112 60 23.04 23.29
”SLC(20,0,0)” 669.67 878.55 112 55 22.02 22.26

”SLC(10,50,0)” 899.41 1,250.6 106 58 21.41 22
”SLC(20,50,0)” 838.19 1,054.18 108 61 19.66 20.8

”DSC(1,0,0)” 1,204.19 2,148.55 95 48 26.14 26.14
”DSC(10,0,0)” 831.33 1,208.23 109 55 22.24 22.8
”DSC(20,0,0)” 762.19 1,207.75 109 60 21.67 21.98

”DSC(10,50,0)” 992.31 1,539.85 102 56 16.33 16.68
”DSC(20,50,0)” 928.37 1,489.96 105 56 17.07 17.64

Sequential colouring (SC) refers to greedy strategies which colours vertices
of a graph one by one. It is proven that there exists an order which, when uti-
lized by the SC, results in an optimal colouring. Matula et al. (1972) presents
an in depth study of the influence of the order in which vertices are coloured
in a SC heuristic. This work introduced the SL ordering and proved that when
utilized by the SC, this order guarantees the max-subgraph-min-degree bound
given by

χ(G) ≤ 1 + maxH:subgraph of G minv∈H{degH(v)}
Note that the configuration (1, 0, 0) of vertex-based CMH corresponds to a
SC heuristic and guarantees this bound when one uses SL ordering. The im-
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provement of RVC solution quality with larger block sizes and when applying
the overlap feature motivates similar experiments using SL-ordering in the
vertex-based CMH, resulting in the SL-CMH or SLC.

Figure 3 compares the vertex-based CMH performance with respect to
design parameters η and θ. These experiments are based on the performance
on the insances from set S. It is clear that utilizing SL ordering in the vertex-
based CMH is an improvement over the RVC. The figure 3 also shows how
increasing the block size improves solution quality. However, it must be noted
that very large blocks lead to very long runtimes and hence the number of
optimal solutions decreases for η = 20. Thus it is not feasible to increase
block size further to improve SLC’s performance. Overlap experiments show
that this feature improve the overall performance of SLC. While it is clear
that the algorithm generates high quality solutions, overlap also increases the
algorithm runtime, thereby leading to the termination of the program before it
generates a solution. This results in fewer feasible and optimal solutions and
larger average %gaps compared to the results of SLC implemented without
overlap.

From these experiments it is clear that while overlap can improve the
CMH solution quality, its influence on algorithm runtime makes the overall
CMH strategy rather inefficient. However, it is worth noting that, for overlap
to be able to handle constraints linking blocks more effectively, it requires
vertices which share Constraints 5 to be present in consecutive blocks. This
idea motivates utilizing the DSATUR-based dynamic ordering in the CMH
strategy, resulting in the DSC. While using DSATUR may not lead to solution
quality improvements, it may exhibit better performance when employed with
non-zero overlap.

Similar to all other CMH strategies discussed, the solution quality of DSC
also improves upon increasing block size, as is evident from Figure 3 and
Table 3. Note that concerning experiments without overlap, the SLC exhibits
the best overall performance. Table 3 also presents the results of DSC when
implemented with overlap θ = 50. Out of all the CMH strategies presented
in the paper, DSC when implemented with overlap leads to the lowest %gap
computed over the feasible solutions, indicating its ability to generate high
quality solutions for the VCP. However, algorithm runtime also increases while
adding overlap feature and affects algorithms overall efficiency. SLC exhibits
the lowest impact on algorithm runtime when implementing overlap.

To further improve the method, an upper bound for the chromatic number
is utilized to reduce the size of the formulation. This is done by executing a
simple greedy coloring heuristic that colors vertices one after the other based
on the SL ordering. Moreover, using the number of vertices(n) as the algo-
rithm output on reaching timelimit contribute a disproportionately high value
towards the average gap, making it an inefficient measure to study CMH per-
formance with respect to other best performing algorithms. The SLC and DSC
algorithms after implementing this modification is renamed as SLC’ and DSC’
respectively and their performance on the difficult VCP instances is presented
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in Table 4 along with that of the other best performing heuristics for compar-
ison.
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Fig. 3: Performance comparison of various vertex-based CMH approaches

295

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Reshma Chirayil Chandrasekharan, Tony Wauters
T

ab
le

4:
P

er
fo

rm
an

ce
of

S
L

C
an

d
D

S
C

on
so

m
e

of
th

e
d

iffi
cu

lt
V

C
P

in
st

an
ce

s.
P

er
fo

rm
an

ce
d

et
ai

ls
of

so
m

e
b

es
t

p
er

fo
rm

in
g

al
go

ri
th

m
s

ar
e

a
ls

o
p

ro
v
id

ed
fo

r
co

m
p

ar
is

on
su

ch
as

Im
p

as
se

:
(M

or
ge

n
st

er
n

,
19

96
),

V
S
S

-C
ol

:
(H

er
tz

et
al

.,
20

08
),

M
IP

S
C

L
R

:
(F

u
n

ab
ik

i
an

d
H

ig
a
sh

in
o
,

20
00

)
an

d
M

M
T

:
(M

al
ag

u
ti

et
al

.,
20

08
).
k

d
en

ot
es

th
e

n
u

m
b

er
of

co
lo

rs
u

se
d

an
d

T
(s

)
d
en

o
te

s
th

e
al

go
ri

th
m

ru
n
ti

m
e

in
se

co
n

d
s.

Im
p
a
s
s
e

V
S
S
-C

o
l

M
IP

S
C
L
R

M
M

T
S
L
C
’(
1
0
,5

0
,0

)
S
L
C
’(
2
0
,5

0
,0

)
D
S
C
’(
1
0
,5

0
,0

)
D
S
C
’(
2
0
,5

0
,0

)

In
st

a
n
c
e

n
m

χ
G

b
e
st

k
T

(s
)

k
T

(s
)

b
e
st

a
v
g
.

T
(s

)
b

e
st

a
v
g
.

T
(s

)
k

T
(s

)
k

T
(s

)
k

T
(s

)
k

T
(s

)

D
S
J
C

1
2
5
.1

1
2
5

7
3
6

5
5

5
0

5
5

2
1

7
1
.1

5
7

0
.4

2
6

0
.9

5
6

0
.5

8
D

S
J
C

1
2
5
.5

1
2
5

3
,8

9
1

1
7

1
7

1
1
7

1
7

1
1
7

1
7

1
2
2

2
4

8
.9

7
2
4

6
.1

1
2
1

9
.8

2
3

5
.9

9
D

S
J
C

1
2
5
.9

1
2
5

6
,9

6
1

4
4

4
4

4
4

0
4
4

4
4

1
2
1

5
5

3
0
.0

2
5
1

1
9
.1

7
5
1

3
1
.2

9
5
0

1
9
.4

9
D

S
J
C

2
5
0
.1

2
5
0

3
,2

1
8

8
8

8
5

8
8

2
1

1
2

7
.4

6
1
1

3
.8

4
1
1

1
1

1
1

5
.7

5
D

S
J
C

2
5
0
.5

2
5
0

1
5
,6

6
8

2
8

2
8

2
2

2
8

2
8
.4

1
4

2
8

2
8

1
1
7

4
1

1
1
0
.4

5
4
2

6
6
.5

7
3
7

1
2
4
.0

1
3
7

7
1
.6

2
D

S
J
C

2
5
0
.9

2
5
0

2
7
,8

9
7

7
2

7
2

7
2
.4

3
1

7
2

7
2

8
9

9
5

3
8
1
.7

7
9
2

2
1
7
.3

8
9
2

4
1
4
.7

8
9
2

2
3
4
.5

D
S
J
C

5
0
0
.1

5
0
0

1
2
,4

5
8

1
2

1
2

9
7

1
2

1
2
.4

8
4

1
2

1
2
.2

5
2
1
0

1
8

8
4
.5

7
1
8

4
5
.9

3
1
6

1
9
2
.8

3
1
7

9
7
.7

D
S
J
C

5
0
0
.5

5
0
0

6
2
,6

2
4

4
8

4
9

6
6
0

4
8

1
,3

3
1

4
9

4
9
.4

3
4
9

4
8

4
8
.2

5
3
8
8

7
2

1
,3

6
8
.5

1
6
9

7
8
3
.7

6
5

1
,7

2
1
.8

5
6
6

9
5
8
.1

D
S
J
C

5
0
0
.9

5
0
0

1
.1

2
·1

0
6

1
2
6

1
2
6

1
,6

8
6

1
2
7

1
2
7
.8

4
8
0

1
2
7

1
2
7
.7

5
4
3
3

1
7
6

3
,6

0
0

1
7
6

3
,6

0
0

1
7
6

3
,6

0
0

1
7
6

3
,6

0
0

D
S
J
C

1
0
0
0
.l

1
,0

0
0

4
9
,6

2
9

2
0

2
0

2
,3

9
6

2
1

2
1

9
0

2
0

2
0
.2

5
2
6
0

3
0

1
,0

3
2
.5

5
3
0

3
,6

0
0

2
6

2
,6

8
2
.3

8
2
6

2
,0

1
3
.5

4
D

S
J
C

1
0
0
0
.5

1
,0

0
0

2
.5
·1

0
5

8
3

8
9

1
,1

4
8

8
8

2
,0

2
8

8
8

8
9

4
,6

5
8

8
4

8
4
.2

5
8
,4

0
7

1
2
4

3
,6

0
0

1
2
4

3
,6

0
0

1
2
4

3
,6

0
0

1
2
4

3
,6

0
0

D
S
J
C

1
0
0
0
.9

1
,0

0
0

4
.4

9
·1

0
5

2
2
4

2
2
4

3
,3

2
6

2
2
8

2
2
9
.6

1
,5

6
5

2
2
5

2
2
6

3
,2

3
4

3
1
8

3
,6

0
0

3
1
8

3
,6

0
0

3
1
8

3
,6

0
0

3
1
8

3
,6

0
0

D
S
J
R

5
0
0
.1

5
0
0

3
,5

5
5

1
2

1
2

1
2

0
1
2

1
2

0
1
2

1
2

2
5

1
2

1
6
.2

5
1
2

8
.3

4
1
2

6
6
.4

3
1
2

3
3
.9

9
D

S
J
R

5
0
0
.1

c
5
0
0

1
.2

1
·1

0
5

8
5

8
5

5
8
5

7
3
6

8
5

8
5

6
8
5

8
5

8
8

1
0
7

3
,6

0
0

1
0
3

2
,3

6
6
.9

1
1
0
7

3
,6

0
0

9
5

2
,7

0
3
.0

6
D

S
J
R

5
0
0
.5

5
0
0

5
8
,8

6
2

1
2
2

1
2
2

1
2
3

1
4

1
2
6

1
,4

0
9

1
2
2

1
2
3
.4

2
7
6

1
2
2

1
2
2

1
6
3

1
2
5

2
,7

2
9
.6

3
1
2
8

1
,4

4
0
.2

4
1
2
7

3
,5

4
5
.3

9
1
2
6

1
,8

5
5
.0

3
le

4
5
0

1
5
a

4
5
0

8
,1

6
8

1
5

1
5

1
5

0
1
5

1
5

1
1
5

1
5

0
1
8

4
7
.8

6
1
8

2
4
.1

8
1
8

1
1
9
.7

5
1
8

7
6
.3

4
le

4
5
0

1
5
b

4
5
0

8
,1

6
9

1
5

1
5

1
5

0
1
5

1
5

1
1
5

1
5

0
1
7

3
,6

0
0

1
7

3
,6

0
0

1
7

1
2
0
.0

8
1
6

5
8
.9

6
le

4
5
0

1
5
c

4
5
0

1
6
,6

8
0

1
5

1
5

1
5

5
1
5

6
1
5

1
5
.2

1
1

1
5

1
5

3
2
6

7
4
.1

5
2
5

4
0
.5

8
2
4

2
5
1
.4

5
2
5

1
3
0
.8

3
le

4
5
0

1
5
d

4
5
0

1
6
,7

5
0

1
5

1
5

1
5

3
1
5

4
4

1
5

1
5

5
1
5

1
5

4
2
7

7
8
.4

5
2
7

3
,6

0
0

2
5

2
5
4
.9

5
2
6

1
3
1
.6

5
le

4
5
0

2
5
c

4
5
0

1
7
,3

4
3

2
5

2
5

2
6

1
2
6

2
6

7
2
5

2
5

1
,3

2
1

3
0

9
4
.3

1
3
0

5
0
.1

8
2
9

3
1
9
.6

4
3
0

1
6
2
.1

6
le

4
5
0

2
5
d

4
5
0

1
7
,4

2
5

2
5

2
5

2
6

1
2
6

2
6
.4

1
2
5

2
5

4
3
6

3
0

3
,6

0
0

3
0

4
8
.0

9
2
8

3
1
0
.2

5
2
9

1
5
4
.7

r2
5
0
.1

2
5
0

8
6
7

8
8

8
0

8
8

0
8

8
2
6

8
0
.9

1
8

0
.4

4
8

3
.1

7
8

1
.7

r2
5
0
.1

c
2
5
0

3
0
,2

2
7

6
4

6
4

6
4

0
6
4

6
4

2
6
4

6
4

2
1

6
7

1
9
1
.9

7
6
7

1
0
3
.7

7
6
7

4
0
1
.0

3
6
5

2
1
2
.7

3
r2

5
0
.5

2
5
0

1
4
,8

4
9

6
5

6
5

6
5

7
6
5

6
5
.8

1
6

6
5

6
5

6
4

6
7

9
1
.8

3
6
8

3
,6

0
0

6
8

2
0
4
.4

2
6
7

1
0
6
.4

r1
0
0
0
.1

1
,0

0
0

1
4
,3

7
8

2
0

2
0

2
0

1
2
0

2
0

0
2
0

2
0

3
7

2
0

1
1
3
.8

2
0

5
8
.5

1
2
0

2
,0

2
1
.9

9
2
0

1
,0

0
4
.6

8
r1

0
0
0
.1

c
1
,0

0
0

4
.8

5
·1

0
5

9
8

9
8

4
6

9
8

9
8
.8

5
5
7

9
8

9
8

5
1
8

1
2
0

3
,6

0
0

1
2
0

3
,6

0
0

1
2
0

3
,6

0
0

1
2
0

3
,6

0
0

r1
0
0
0
.5

1
,0

0
0

2
.3

8
·1

0
5

2
3
4

2
3
4

2
4
1

7
7

2
3
7

2
3
8
.6

1
,3

4
5

2
3
4

2
3
4

7
5
3

2
5
1

3
,6

0
0

2
5
1

3
,6

0
0

2
5
1

3
,6

0
0

2
5
1

3
,6

0
0

la
ti

n
sq

u
a
re

1
0

9
0
0

3
.0

7
·1

0
5

9
8

9
8

4
1
5

9
9

1
0
0
.2

9
3
8

1
0
1

1
0
2

5
,1

5
6

2
1
3

3
,6

0
0

2
1
3

3
,6

0
0

2
1
3

3
,6

0
0

2
1
3

3
,6

0
0

fl
a
t3

0
0

2
0

0
3
0
0

2
1
,3

7
5

2
0

2
0

2
0

0
2
0

2
0

2
2
0

2
0

2
1

4
6

9
6
.8

9
4
4

5
6
.4

9
4
3

2
0
5
.4

3
4
2

1
1
8

fl
a
t3

0
0

2
6

0
3
0
0

2
1
,6

3
3

2
6

2
6

2
6

1
2
6

2
6

1
2
6

2
6

3
6

4
6

9
6
.6

7
4
4

5
7
.5

9
4
2

2
1
1
.2

7
4
1

1
2
1
.1

4
fl
a
t3

0
0

2
8

0
3
0
0

2
1
,6

9
5

2
8

2
8

3
1

1
5
6

2
9

8
6
7

3
1

3
1

1
3
3

3
1

3
1

2
1
2

4
5

9
7
.0

8
4
6

5
7
.6

4
4
3

2
1
2
.3

8
4
4

1
2
2
.3

8
fl
a
tl

0
0
0

5
0

0
1
,0

0
0

2
.4

5
·1

0
5

5
0

5
0

5
0

0
5
0

3
1
8

5
0

5
0

1
4

5
0

5
0

1
,4

1
7

1
2
5

3
,6

0
0

1
2
5

3
,6

0
0

1
2
5

3
,6

0
0

1
2
5

3
,6

0
0

fl
a
tl

0
0
0

6
0

0
1
,0

0
0

2
.4

6
·1

0
5

6
0

6
0

6
0

0
6
0

6
9
4

6
0

6
0

5
9

6
0

6
0

3
,6

4
5

1
2
3

3
,6

0
0

1
2
3

3
,6

0
0

1
2
3

3
,6

0
0

1
2
3

3
,6

0
0

fl
a
tl

0
0
0

7
6

0
1
,0

0
0

2
.4

7
·1

0
5

8
2

8
9

8
9
7

8
7

1
,6

8
9

8
7

8
7
.8

2
,4

9
9

8
3

8
3
.5

7
,3

2
5

1
2
5

3
,6

0
0

1
2
5

3
,6

0
0

1
2
5

3
,6

0
0

1
2
5

3
,6

0
0

A
v
e
ra

g
e

g
a
p

1
.7

8
0
.7

1
4
4
.1

3
4
2
.6

6
3
8
.1

9
3
8
.4

8
A

v
e
ra

g
e

ru
n
-

ti
m

e
3
8
6
.7

9
1
,0

2
0
.4

1
1
,4

6
9
.2

7
1
,4

6
8
.2

2
1
,4

5
4
.0

1
1
,2

5
8
.8

5

M
a
x
im

u
m

ru
n
ti

m
e

4
,6

5
8

8
,4

0
7

3
,6

0
0

3
,6

0
0

3
,6

0
0

3
,6

0
0

296

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



A constructive matheuristic approach for the vertex colouring problem

5 Results and Discussion

The present paper presents preliminary research conducted in order to design
an efficient constructive matheuristic (CMH) strategy for the vertex colouring
problem. The primary insight gained from this work is that it is possible to
extend subproblems of successive augmentation techniques and employ simple
integer programming approaches to arrive at high quality solutions. This, in
turn, becomes a way of designing a CMH. Experiments show that algorithm
design parameters such as overlap can be effectively utilized to improve the
solution quality. The major challenge, however, is the very high impact of such
features on algorithmic runtime. Previous research has shown that identifying
smarter decomposition strategies and introducing components that better nav-
igate the CMH may overcome this drawback. Therefore, future research will
explore decomposition strategies for CMH and study their suitability when
implemented alongside CMH design parameters.
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