
A metaheuristic approach for an intermittent
traveling salesperson problem extension

Pieter Leyman · Patrick De Causmaecker

Received: date / Accepted: date

Abstract We discuss the intermittent traveling salesperson problem (ITSP),
an extension to the well-known traveling salesperson problem. Similar to the
classical problem, the ITSP requires that a tour visits all nodes in the network,
but each node now has a required processing time as well. Furthermore, the
allowable consecutive processing time of a node is limited, which results in the
introduction of waiting time and/or multiple visits. As a result, a valid tour
for the ITSP may no longer constitute a Hamiltonian cycle, but could include
loops as well as use edges multiple times.

We omit assumptions made in earlier work on the ITSP, to allow for a
broader and more realistic discussion of the problem. Specifically, we gener-
alize the underlying model that determines the maximum consecutive node
processing time. The contribution of the research can be summarized as fol-
lows. First, we propose a metaheuristic algorithm for this extended ITSP. We
focus on algorithm components and specifically propose several options for
the decoding procedure from solution representation to an ITSP tour. Second,
we perform computational experiments, to allow for meaningful insights into
each algorithm component’s performance. We generate sufficiently diverse test
instances, to warrant generalizable conclusions.

Keywords Routing · Temperature functions · Metaheuristics · Solution
representation

Pieter Leyman is a Postdoctoral Fellow of the Flemish Research Foundation with contract
number 12P9419N.

P. Leyman
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
E-mail: pieter.leyman@kuleuven.be

P. De Causmaecker
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
E-mail: patrick.decausmaecker@kuleuven.be

252

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

Pieter Leyman, Patrick De Causmaecker

1 Introduction

We consider the intermittent traveling salesperson problem (ITSP) as a variant
of the traveling salesperson problem (TSP), in which each node may need to
be visited more than once. Each node has a required processing time, and a
maximum temperature is imposed above which overheating would occur (or,
alternatively, a maximum node capacity would be exceeded). An important
trade-off to be made is whether to wait for a node to cool down sufficiently to
allow for further processing, or to move to another node, process (a part of)
that one, and move back to the first node. Note that there is no restriction
which states that one should go back to an earlier abandoned node as soon as
possible. Depending on among others, the underlying graph structure, it may
prove beneficial to only finish processing some nodes at a much later time.

A major assumption of earlier work by Pham et al. (2020) concerns the
temperature increase and decrease functions. Whereas in earlier work, the node
temperature is considered to increase and decrease in a linear fashion, we now
wish to relax this assumption, and propose generalized temperature increase
and decrease functions (Section 2).

Consider that, while we retain the original naming, specifically regarding
temperature (functions), the ITSP can potentially be applied in many different
fields. Examples are the processing of a metal surface with a laser, in which case
the metal cannot be allowed to overheat, and the delivery of fuel to different
locations, with both a fill and usage rate.

2 Problem definition

2.1 General

An undirected graph G(V,E) can be used to model the ITSP, with V the set
of vertices or nodes (including the depot), and E the edges between the nodes.
Each node i has a required processing time pi (p0 = 0 for the depot) and a
temperature τi which would be achieved if node i would be processed for pi
consecutive time units. The specific values for both pi and τi are determined
independently. The travel time between each pair of nodes (i, j) is dij (dij ≥ 0).
We assume that dij = dji and that the triangle inequality holds, which means
that the direct travel time between any pair of nodes is never larger than the
travel time between both nodes via a detour to any other node. Furthermore, a
maximum temperature of Tmax is imposed. The goal of the ITSP is to minimize
the time at which the “salesperson” returns to the depot and all nodes have
been fully processed. As a result, the objective function value consists of the

total processing time (
∑|V |

i=1 pi), the times traveled between the nodes and
any waiting time incurred. Consider that the latter two depend on the route
selected through the network, whereas the former is independent of the route
taken. Finally, we wish to point out the use of some terminology. For the ITSP,
each node i may be visited multiple times, with a different visit implying

253

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A metaheuristic approach for an ITSP extension

that at least one other node has been (partially) processed and traveled to
in between. Additionally, each visit may consist of multiple processing steps,
which are separated by waiting times. In this case, however, we do not leave
node i, but wait for it to cool down, before we continue with processing.

2.2 Temperature functions

To model the temperature Ti(t) of node i after ti consecutive time units of
processing we use the following general polynomial function:

Ti(ti) = τi · (ti/pi)a, ti ≤ pi (1)

with a a constant which determines the increase rate (a ∈]0; +∞[). A value
of a between 0 and 1 (neither included) leads to a concave temperature increase
function (fast initial increase), whereas a value larger than 1 leads to a convex
function (slow initial increase). A value of 1 corresponds with a linear increase.
Figure 1 shows an example of how the node temperature increase function can
differ based on the selected value for a. Furthermore, a can be seen as a feature
of the problem studied and the nature of processing, which determines how
the temperature of the material increases.

Allow us to illustrate our reasoning with a simple example. Assume that
for a given node i (pi = 10, τi = 10), we have a value for a of 0.5 (which
corresponds with the a = 0.5 curve in Figure 1). If we furthermore assume
a Tmax value of 7, this leads to a maximum consecutive processing time ci
for node i of 4 time units (= bpi·exp(ln(Tmax/τi)/a)c), by rounding down the
inverse of Function (1) given a temperature Ti(t) of 7. Note that we round the
result down to the nearest integer, since we assume integer processing times.

So far, however, we have only explained how the temperature increase is
modeled, but not the temperature decrease. Provided that the increase func-
tion, given a node i, only depends on the heating parameter a, we choose to
employ the same function but with a different cooldown parameter b:

Ti(ti) = τi · (ti/pi)b, ti ≤ pi (2)

The way we want to use this decrease function is, however, different from
the manner in which we use the increase function. Recall from the earlier
example, that for node i we had determined that the maximum number of
consecutive time units of processing ci was 4. The cooldown function now
allows us to determine how long it takes to once again reach the node start
temperature of 0, assuming no further processing occurs in the meantime.
From Function (1) we calculate the actual temperature after processing 4
time units, which yields 6.32. This actual temperature will never be higher
than Tmax, since ci is determined by rounding down the inverse of Function
(1), given Tmax. We now calculate the inverse of Function (2), assume b = 2,
with a temperature of 6.32. We round up the resulting number of time units
of 8.37 to 9, to ensure that node i fully cools down.

254

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

Pieter Leyman, Patrick De Causmaecker

Fig. 1 Example temperature functions: the higher (lower) the value for a, the slower (faster)
the initial T increase.

Table 1 Example of how a visit to node i can be split into multiple processing steps (PS),
with waiting time in between the different steps to ensure node i cools down sufficiently.

PS 1 2 3

ti 4 4 2
wi 9 3 0

Recall, however, that the total pi value of node i in the example was 10.
One way to finish work on node i entirely is to process another 4 time units,
cool down such that the final 2 time units can be processed, and then finish
processing. For the example in Table 1, this leads to another waiting time of
3 time units, based on functions (1) and (2) (details are omitted for the sake
of conciseness).

A summary of the way in which node i is processed in the example is given
in Table 1, with ti the selected processing time for the current processing step
PS and wi the waiting time after processing. Terminology wise, it is worth
mentioning that in this example we use three processing steps for a single visit
to node i.

The manner in which Functions (1) and (2), based on given a and b values,
are employed, can then be summarized as follows:

1. Function (1) is used to model the temperature increase of a node i.
2. The maximum number of consecutive time units being processed (ci) is

calculated, based on the inverse of Function (1) and a given value for Tmax.

255

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A metaheuristic approach for an ITSP extension

3. Based on a processing time ti, which is never larger than ci, the resulting
temperature is determined by Function (1).

4. This temperature value is then employed to calculate the required cooldown
time to reach a node temperature of 0, based on the inverse of Function
(2).

5. The interplay between Functions (1)-(2), and hence between a and b, de-
termines what the best way is to minimize waiting time, for a given visit
of a node i and a required processing time for that visit.

6. Different values for a and b allow for vastly different types of increase and
decrease functions, and hence different types of applications.

3 Methodology

3.1 Metaheuristic framework

We employ the metaheuristic framework of Vidal et al. (2012, 2013) as starting
point for our own algorithm. The hybrid genetic search with adaptive diversity
control (HGSADC) metaheuristic is a hybrid metaheuristic framework, which
combines the exploration elements of a classical genetic algorithm with both
population diversity management and with efficient local search procedures.
Given the intricate nature of the ITSP as discussed in Section 2, we have
selected the HGSADC as metaheuristic framework, since it allows for a focus
on local search techniques and deals with infeasible solutions, both of which
we feel are crucial for the ITSP. Furthermore, the HGSADC achieved excellent
results for the vehicle routing problems discussed in Vidal et al. (2012, 2013).
Finally, in this abstract we focus, albeit briefly, on the components that we
designed specifically for the ITSP, namely the solution representations and
decoding procedure, since we have not deviated from the general structure of
the HGSADC. An overview of the decoding procedure is provided in Figure 2.

3.2 Decoding procedure

Since a metaheuristic algorithm operates on a solution representation and not
on a solution itself, this is a crucial algorithm component. Leyman et al. (2019)
unambiguously showed that, albeit for a specific project scheduling problem,
the choice of a solution representation deserves more attention than it in gen-
eral receives in literature. The following two types of solution representations
are used:

– Node list + processing time list (NL+PTL): A NL holds the order in
which the nodes are to be visited, similar to a representation for the TSP,
with the major difference that nodes may occur more than once, signifying
multiple visits. The PTL holds the time processed during the current visit
to the corresponding node in the NL (both the NL and PTL have the same
length). A major downside of this PTL is that the sum of all values for a

256

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

Pieter Leyman, Patrick De Causmaecker

Fig. 2 Overview different steps decoding procedure.

given node i not only has to equal pi, but also that each PTL value has to
lie in the interval [1; pi]. As a result, a repair operator is required as well.

– Node list + random key list (NL+RKL): The NL functions in the same
manner as discussed earlier, but the general logic behind the RKL is that
it contains only a floating point number between zero and one for each
visit. Specifically, each value in the RKL corresponds with the fraction of
the node’s processing time to be completed during the current visit. This
way, we only need to make sure that the sum of the RKL values for the
same node equals one. We do, however, need a translation procedure when
constructing a tour, to convert the RKL values to actual processing times.

4 Computational study

4.1 Test data

We generate test data based on the features in Table 2. Aside from the tem-
perature constrainedness (TC), all features have been discussed in Section 2.
The value for TC determines how tight the maximum temperature restriction
is, given τi values for individual nodes. The value for Tmax is calculated as

follows: Tmax =
∑|V |

i=1 τi· TC /|V |. As a result, a low (high) value for TC leads
to a low (high) Tmax value as well. For each combination of instance features,
10 instances are generated, which results in a total dataset of 4320 instances.

4.2 Computational results

Table 3 shows a summary of the results for both the NL+PTL and NL+RKL
combinations in terms of total time, total travel time and total waiting time.
Each time, a stopping criterion of 5000 tours was used, to allow for a computer
and code independent comparison (Leyman and De Causmaecker, 2017). Each
cell in the table contains the average value over all 4320 test instances used.

257

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A metaheuristic approach for an ITSP extension

Table 2 Instance features and feature values of test data.

Feature Values

|V | 50, 100
pi [1; 20], [1; 100]
τi [1; 20], [1; 100]
dij [1; 20], [1; 100]
TC 0.25, 0.5, 0.75
a 0.5, 1.0, 2.0
b 0.5, 1.0, 2.0

Table 3 Overview results for different solution representations (average).

Total time Total travel time Total waiting time

NL+PTL 5030.93 1155.27 1567.95
NL+RKL 5036.09 1160.86 1567.51

Pham et al. (2020) 5647.83 1227.98 2112.13

Table 4 Temperature function results for different solution representations (average total
time).

NL+PTL NL+RKL Pham et al. (2020)
0.5 7234.18 7245.81 8587.31

a 1 4147.95 4158.06 4467.74
2 3710.66 3704.40 3888.44

0.5 3976.68 3967.76 4123.68
b 1 5050.12 5057.89 5484.14

2 6066.00 6082.62 7335.66

We also compare with the results of Pham et al. (2020), by including their de-
coding procedure in the HGSADC. This way, we can show that there is a clear
contribution of taking the temperature functions into account in the proposed
decoding procedures, since Pham et al. (2020) assume linear functions and do
not include any mechanism to account for different types of functions.

Based on the results in Table 3, we can conclude that both NL+PTL
and NL+RKL outperform the other case, but that the difference between
themselves is small. The large improvement in average waiting time compared
with Pham et al. (2020) shows that explicitly considering the temperature
functions is worth its salt.

Table 4 provides more detailed results of the three alternatives, by splitting
results based on the different a and b values used in the test design (Table 2).
In general, the results are in line with those of Table 3, but we can see that
regardless of a and b values there is an improvement compared to the decod-
ing procedure of Pham et al. (2020). Hence, we can argue that our decoding
procedure performs better in general, since linear functions are included in the
results of Table 4 as well (a = 1, b = 1).

258

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

Pieter Leyman, Patrick De Causmaecker

4.3 Critical remarks

Due to the results discussed above, we should more closely study the impact
of travel versus processing times of a visit, since currently it seems that the
algorithm prefers waiting time over travel time. We believe this is due to the
travel times in the test data on average being of similar size as the processing
times. This implies that if the average travel times are smaller than or similar
to the average processing times, it is preferential to wait instead of moving to
another node. We assume that as the travel times grow comparatively smaller,
moving to another node instead will become the better choice, on average. But
in order to be able to verify (or reject) this assumption, further testing with a
more diverse test set is required.

5 Conclusions & future work

In this paper, we have discussed the intermittent traveling salesperson problem
(ITSP) with generalized temperature functions. The ITSP is an extension of
the well-known traveling salesperson problem (TSP), but in which each node
has to be processed for a given duration and not just visited. Processing a
node increases the node temperature, which should not exceed a maximum
value. As a result, the ITSP may require multiple visits to nodes, unlike the
TSP, where a single visit is imposed. Additionally, we have proposed general
polynomial functions, which determine the manner in which node temperature
increases and decreases.

To solve the ITSP with generalized temperature functions, we have em-
ployed the hybrid genetic search with adaptive diversity control of Vidal et al.
(2012, 2013) as metaheuristic framework, and focused our contribution on so-
lution representation alternatives and a decoding procedure.

In the future, we will study specific applications of the ITSP, closely linked
to real-world problems to demonstrate the ITSP’s practical relevance. Alter-
natively, we aim to consider heat transfer functions from physics and thermo-
dynamics, which differ from the presently modeled cooling schemes for e.g. the
metal surface processing application discussed earlier.

From a methodology and testing point of view, we will further investigate
the decoding procedures, to better grasp the ITSP’s intricacy, and to include
additional solution representations. The test design should also be expanded
to allow for networks of different (and larger) sizes, alongside a greater de-
gree of variation in the heating and cooldown feature values. The algorithm’s
parameters should be tuned using an automatic algorithm configurator (e.g.,
SMAC, ParamILS, irace) rather than using the default values of Vidal et al.
(2012, 2013) and ad-hoc values for additional parameters. Finally, the results
should be analyzed in more detail, to allow for a clear evaluation of the con-
tribution of each algorithm component, and to determine for which (type of)
instances which solution representation leads to the best results.

259

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A metaheuristic approach for an ITSP extension

References

Leyman P, De Causmaecker P (2017) Evaluation of metaheuristics: Is compu-
tation time worth the time? In: Proceedings of the 31st annual meeting of
the Belgian Operational Research Society (ORBEL), pp 89–90

Leyman P, Van Driessche N, Vanhoucke M, De Causmaecker P (2019) The im-
pact of solution representations on heuristic net present value optimization
in discrete time/cost trade-off project scheduling with multiple cash flow
and payment models. Computers and Operations Research 103:184–197

Pham TS, Leyman P, De Causmaecker P (2020) The intermittent travel-
ling salesman problem. International Transactions in Operational Research
27:525–548

Vidal T, Crainic T, Gendreau M, Lahrichi N, Rei W (2012) A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Operations
Research 60(3):611–624

Vidal T, Crainic T, Gendreau M, Prins C (2013) A hybrid genetic algorithm
with adaptive diversity management for a large class of vehicle routing prob-
lems with time-windows. Computers and Operations Research 40:475–489

260

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

