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Abstract In the dynamic pickup and delivery problem with time windows (PDP-
TW), there exists uncertainty concerning the time windows and locations associ-
ated with requests. Periodic reoptimization policies are suitable for dealing with
such uncertainty. The key question is to what extent these policies are robust for
the dynamic PDPTW. We analyze robustness by taking into account both the
reoptimization period and the dynamism degree. We first evaluate the robustness
locally after each reoptimization and then evaluate it globally at the end of the
scheduling horizon. Results indicate that robustness increases both locally and
globally when either the reoptimization period lengthens or the dynamism degree
increases, and vice versa. Finally, we conclude that periodic reoptimization policies
for the dynamic PDPTW handle uncertainty best when the reoptimization period
matches the requests’ urgency.

Keywords Dynamic pickup and delivery with time windows · Periodic
reoptimization policy · Robustness analysis

1 Introduction

How should one handle the inherent uncertainty present in dynamic problems?
This is not a straightforward question to answer given that there is little agreement
concerning how exactly one should even quantify performance in dynamic prob-
lems, let alone how best to maintain high quality solutions under such conditions.
In a problem such as the dynamic pickup and delivery problem with time windows
(PDPTW), uncertainty can arise in many forms: request locations, request time
windows, vehicle availability and so forth. If an approach for the dynamic PDPTW
is able to consistently produce high quality solutions despite these unknowns, then
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it is referred to as robust.

The more uncertainty a method can handle, the more robust it is said to be.
Two possibilities for addressing uncertainty in the dynamic PDPTW are (i) those
which reserve unscheduled vehicles to deal with unforeseen request arrivals and (ii)
reoptimization-based approaches. Despite their widespread use, reservation-based
approaches are inefficient for two reasons. First, surplus vehicles are not profitable
during non-peak periods. Second, if none of the reserved vehicles are located close
to the location(s) associated with unpredictable requests, then it is a waste of
resources to reserve additional vehicles during the peak periods.
As Psaraftis [5] have highlighted, there is usually very little flexibility when it
comes to varying fleet size in reoptimization-based approaches. There is usually
some timespan before the schedules are executed. Consequently, solving the dy-
namic PDPTW as a static scheduling problem using robust optimization affords
greater flexibility in terms of including additional vehicles in order to meet de-
mand.
Dynamism and urgency [7] are two important parameters associated with a dy-
namic PDPTW instance. The dynamism degree corresponds to the frequency with
which requests arrive. Meanwhile, urgency levels convey how quickly those re-
quests must be serviced. The combination of these two parameters represents an
instance’s degree of uncertainty. A thorough understanding of the issues stemming
from the various forms of uncertainty is helpful for solving the PDPTW. This is
especially the case when there is no prior knowledge available concerning request
arrivals, their locations and their time windows.
The time interval associated with reoptimization is what determines optimization
runtime. One possibility is to react to each and every information update, a policy
referred to as reactive reoptimization. Another possibility is to only reoptimize
once a set of predefined criteria is met, a policy referred to as periodic reoptim-
ization. Reactive reoptimization is likely to generate huge computational burdens
when solving large-scale problems and demands more resources than periodic re-
optimization policies to maintain solution quality [3]. On the other hand, the
periodic reoptimization policy introduced by Karami et al. [2] takes urgency levels
into account and defines a buffering time interval between consecutive calls to the
solver. As a result, periodic reoptimization policies are capable of controlling the
amount of time available for reoptimization. Thus, they call for a trade-off between
solution quality and robustness.
Figure 1 illustrates how utilizing a reactive reoptimization policy differs from us-
ing a periodic policy. This example concerns the assignment of two requests to a
single vehicle before noon. The two requests are announced during the workday at
9:35 and 9:40 with their pickup and delivery time windows being [9:35-11:00] and
[9:40-9:50], respectively. Rejecting requests is not permitted. The vehicle traverses
a Manhattan-style grid where each edge requires five minutes of travel time. The
objective is to minimize the sum of travel times, driver overtime, and lateness of
requests. While the best solution the reactive reoptimization policy can achieve
takes 150 minutes, the periodic policy generates a solution of 135 minutes when its
reoptimization period is set to 5 minutes, despite the fact it begins servicing at a
later point in time. If we increase the reoptimization period from 5 to 20 minutes,
the best attainable objective value then becomes 190 minutes. This example simply
demonstrates the potential benefit of a periodic reoptimization policy and the cru-

244

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Robustness of periodic reoptimization policies for the dynamic PDPTW

cial role of the reoptimization period. Now, however, one crucial question arises:
what reoptimization period will produce high quality solutions that are also robust
with respect to unpredictable request arrivals?

Figure 1: Dynamic PDPTW addressed by one reactive and two periodic reoptim-
ization policies

Two possible metrics for robustness are the solution itself and its quality. In the
former, robustness concerns preserving the assignments constituting a solution.
Meanwhile, the latter metric only considers solution quality, regardless of the num-
ber of changes made to the schedule. Since solutions are frequently updated dur-
ing a periodic reoptimization policy, the solution quality perspective of robustness
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makes most sense. Therefore, for the remainder of this paper, robustness refers to
solution quality robustness.
Investigating a periodic reoptimization policy’s robustness involves exploring the
range of different degrees of uncertainty under which a given dynamic PDPTW
performs ‘well’, ‘as intended’ or ‘as required’. The dynamic PDPTW with request
time windows’ uncertainties has been defined by Srour et al. [6] with the assump-
tion that exact pickup and delivery locations are known while the time windows
are uncertain. Morlok and Chang [4], however, consider request location uncer-
tainty for a transportation system.

Nevertheless, the academic literature lacks a means of quantifying robustness
when it comes to periodic reoptimization policies for the dynamic PDPTW, when
considering uncertainty for both timing (arrivals and time windows) and loca-
tions. This research is dedicated to addressing this issue. We analyze the robust-
ness of periodic reoptimization in the dynamic PDPTW with respect to varying
reoptimization periods and degrees of dynamism. Our experiments are conducted
on generated instances which exhibit a variety of dynamism degrees and urgency
levels.

2 Uncertainty metric

2.1 Urgency and dynamism

A dynamic PDPTW instance [1] is a triple (τ, ε, V ) where τ denotes the scheduling
horizon, V the fleet of vehicles, and where ε consists of all request arrivals. The
time at which a request r becomes known is referred to as its arrival time ar. The
continuity of request arrivals corresponds to the PDPTW’s degree of dynamism,
while urgency is treated as a distinct characteristic and defined as the length of
time from a request’s arrival until the end of either its pickup or delivery time
window. The information regarding both the pickup and delivery tasks’ time win-
dows is available upon request arrival. Given that the pickup should be finished
first, we define urgency based on the pickup time window.

To generate instances with different degrees of dynamism using the generator
provided by van Lon et al. [7] consider 4 := {δ0, δ1, . . . , δ|ε|−2} = {arj −ari | j =
i + 1 ∧ ∀ri, rj ∈ ε}, which represents the sequence of inter-arrival times for re-
quests, where | 4 | := |ε| − 1.

The inter-arrival time required for uniform distribution, in other words 100 percent
dynamism, is τ

|ε| . Based on the definition provided by van Lon et al. [7], dynamism
is measured by

Dy = 1−
∑|4|
i=0 σi∑|4|
i=0 σ̂i

,

for which the numerator is the sum of all deviations of inter-arrival times (σi)
relative to the 100 percent case and where the denominator is the maximum de-
viation for the scenario.
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One possible example sequence of inter-arrival times for requests is4a = {0.1, 1, 0.1,
1, 0.1, 1, 0.1, 1, 0.1}, which corresponds to five small bursts with intervals of 0.1 and
four of 1 unit, as shown in Figure 2(a). By changing this order, another possible
sequence for request inter-arrival times is 4b = {1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1},
which has one large burst of request arrivals in the middle and two individual
request arrivals at both the beginning and end, as shown in Figure 2(b). Thus, the
degree of dynamism of Figure 2(a) is 55.5%, whereas that of Figure 2(b) is 35.1%.

(a)

(b)

Figure 2: Two possible examples of request arrival events with five inter-arrival
times of 0.1 and four inter-arrival times of 1 unit.

In order to conduct our computational study we created a set of instances whose
characteristics exhibit a variety of dynamism and urgency combinations. The gen-
erator was employed to produce instances with three different degrees of dynam-
ism (20%, 50% and 90%) and five different levels of urgency (5, 15, 25, 35 and 45
minutes). Five instances were produced for each of the 15 possible combinations,
resulting in a total of 75 instances.

2.2 An uncertainty metric for periodic reoptimization policy

The degree of certainty of a periodic reoptimization policy refers to the proportion
of observed requests it has integrated into the reoptimization at a particular time
t. Let |ε| be the total number of requests for an instance and nt the number of
requests which have arrived before t. The degree of certainty at time t is then
defined as nt

|ε| .

The length of time between two consecutive optimizations is denoted by ET [2].
Meanwhile, the degree of certainty Ci of reoptimization period i ≥ 1 is equal to
Ci−1 + Γi, where C0 = 0 and Γi represents the additional amount of certainty a
periodic reoptimization policy gains during period i, which can be calculated as
follows:

Γi =
niET − n(i−1)ET

|ε|
We define the degree of uncertainty at optimization period i as Ui = 1 − Ci. We
consider instances with a variety of dynamism and urgency configurations in the
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first two hours of the scheduling horizon in Figure 3. The graphs show the un-
certainty degree determined by a periodic reoptimization policy. The scheduling
horizon’s length τ is four hours. Dy and Ur denote each instance’s dynamism
degree and urgency level, respectively. The degree of uncertainty is calculated for
various ETs. One can observe nonlinear variations concerning the uncertainty
degree of instances with lower degrees of dynamism. However, given that the un-
certainty degree increases relative to the reoptimization frequency, one question
logically arises: does solution quality deteriorate as uncertainty increases? And if
the answer to this question is affirmative, then by how much does it deteriorate?
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(g) Dy : 100%, Ur : 5
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(i) Dy : 100%, Ur : 45

Figure 3: Uncertainty degrees of periodic reoptimization policy in the first two
hours of the scheduling horizon.

3 Periodic reoptimization policies robustness

In this section we analyze the robustness of the periodic reoptimization policy
proposed by Karami et al. [2] where additional requests are inserted into the
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existing schedule with the objective of minimizing the sum of travel time, vehicle
overtime and request lateness. We employed the iterative scheduling algorithm
introduced by Vancroonenburg et al. [8]. At each iteration, a random request is
eliminated from its associated transporter’s route. This request is then reinserted
into the schedule using the cheapest insertion procedure. If the resulting solution
is better than the current solution, it is accepted. The search stops if a predefined
stopping criterion as a maximum number of non-improvements is met. This study
will compare the periodic policy’s objective values against those of the optimum
static solutions obtained by a MILP, which were generated for both the local and
the global problems.

Robustness metric A challenge present in periodic reoptimization is how to
measure the impact of the degree of uncertainty on an existing schedule, both
locally after each optimization and globally at the end of the scheduling horizon.
There is no metric available for calculating local or global robustness. However,
such a metric is needed to assess the impact of request arrivals on the solution’s
quality. First, consider the solution quality associated with each of the schedul-
ing horizon’s reoptimization periods. Let us then define Lnr as the percentage
difference between the average solution quality across the entire horizon and the
worst quality observed. We also define Gnr as the gap between the objective value
incurred by the periodic reoptimization policy over the entire scheduling horizon
with respect to the optimal objective value over the same period. Therefore, local
and global robustness can be defined as 100-Lnr and 100-Gnr, respectively.

Local robustness Figure 4 provides the local robustness values for instances with
urgency levels of {5, 15, 25, 35 and 45 minutes} and dynamism degrees of {low-20%,
medium-50% and high-90%}. Each node in Figure 4(a) corresponds to the local
robustness for instances with five different urgency levels and identical dynamism
degrees. Similarly, each node in Figure 4(b) corresponds to the local robustness
for instances with three different dynamism degrees and identical urgency levels.
Note that progressing along the x-axis involves the level of urgency decreasing.
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Figure 4: Local robustness of the periodic reoptimization policy.
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Figure 4 shows how better local robustness is obtained for instances which are
highly dynamic or which experience low urgency. The figure also illustrates the
small decrease of 4% in the local robustness value when transitioning from ur-
gency level 35 to 45. This may be attributed to the decreased flexibility of the
scheduling algorithm during the very long reoptimization period when the large
number of buffered requests demands more vehicles to achieve a higher robust-
ness. Meanwhile, lower robustness levels are anticipated as the urgency increases
further. The computational results fully support this prediction, as evidenced by
the lack of a peak on the left-hand side of Figure 4(b). This effect is due to the
existence of scenarios which incorporate queues of highly urgent requests that are
larger than the fleet of available vehicles, which implies less flexibility and thus
less robustness. Non-urgent scenarios with any dynamism degree appear the most
flexible scenarios for the scheduling algorithms to address. This is possibly due to
the balanced number of requests associated with such scenarios, a demand pattern
which does not require a large fleet of vehicles. An average local robustness of 70%
is achieved across all instances.

Global robustness Figure 5 provides the global robustness results and illustrates
how global robustness for all instances remains in the range of 66-78%. Figure
5(b) shows that the global robustness decreases in a nonlinear fashion when the
reoptimization frequency is increased. Nevertheless, global robustness across all
instances is relatively high, averaging 73%.

20 40 60 80
70

72

74

76

Dynamism (%)

G
lo
ba
l
ro
bu

st
n
es
s

(a)

10 20 30 40

66

68

70

72

74

76

78

Urgency levels (minutes)

G
lo
ba
l
ro
bu

st
n
es
s

(b)

Figure 5: Global robustness of the periodic reoptimization policy.

4 Conclusions

This paper evaluated the robustness of a periodic reoptimization policy for the
dynamic PDPTW with regard to varying reoptimization periods and dynamism
degrees. The analysis indicates that robustness increases globally at the end of an
instance’s horizon or locally after each optimization when either the reoptimization
period or the dynamism degree increases.
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Shortening the reoptimization period may increase the frequency of disruptions,
which incurs nervous decision-making without improving the schedule’s quality.
Another way of putting this is that a periodic reoptimization policy’s response may
be perfectly sufficient to deal with the disruptions faced and that rescheduling more
frequently can prove counterproductive, at least from a robustness perspective.
Therefore, the reoptimization frequency should be low enough to ensure a high
degree of robustness. As soon as robustness begins to decrease the reoptimization
frequency must be increased. If this simple rule is applied then the robustness of
a periodic reoptimization policy will increase.
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