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Abstract The fixed route dial-a-ride problem (FRDARP) is a variant of the
famous dial-a-ride problem, in which all the requests are chosen between ter-
minals that are located along a fixed route. A reduction to the shortest path
problem has been proposed for finding an FRDARP optimal solution. How-
ever, the basic graph construction ends up with a huge graph, which makes
the reduction impractical due to its memory consumption. To this end, we
propose several pruning heuristics that enable us to considerably reduce the
size of the graph through its dynamic construction. Our experiments show that
each of the proposed heuristics on its own improves the practical solvability of
FRDARP. Moreover, using them together is considerably more efficient than
any single heuristic.

Keywords Timetabling in Transport · DARP · Pruning Heuristics

Tal Grinshpoun
Department of Industrial Engineering and Management, Ariel University, Ariel, Israel
E-mail: talgr@ariel.ac.il

Elad Shufan
Physics Department, SCE – Shamoon College of Engineering, Ashdod, Israel
E-mail: elads@sce.ac.il

Hagai Ilani
Department of Industrial Engineering and Management, SCE – Shamoon College of Engi-
neering, Ashdod, Israel
E-mail: hagai@sce.ac.il

Vadim Levit
Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
E-mail: vadim@bgu.ac.il

Haya Brama
Department of Industrial Engineering and Management, Ariel University, Ariel, Israel
E-mail: hayahartuv@gmail.com

224

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Tal Grinshpoun et al.

1 Introduction

Dial-a ride is a flexible demand responsive transportation solution, in which
a fleet of vehicles fulfills a set of transport requests [9,2]. The flexibility is
usually in both the adjustable departure and pick-up times, as well as in the
vehicle routes. A usual customer request in all the variants of the Dial-a-Ride
Problem (DARP) contains a pick-up location, a destination station, and a
desired pick-up or arrival time. The scheduler groups customers into specific
vehicles, and determines the vehicle routes and timetable. The objective func-
tion is usually related to minimizing the solution cost, and may also include
the aim to increase customer satisfaction. The problem of route determination
in DARP makes the problem hard. Vehicle routing problems, for example the
traveling salesman problem, are known to be NP-hard [5].

In a previous work, we have presented a DARP transportation solution
that neutralizes the difficulty in finding the vehicle routes by determining the
route in advance [7]. The customers can be picked-up from stations that are
located along a known route. We termed this DARP variant a Fixed Route
DARP (FRDARP). With a fixed route, the remaining problem is of grouping
customers together and scheduling the timetable. The DARP solutions, and
in particular the solution we offer, are suitable for a variety of transporta-
tion needs, including dedicated solutions for low-populated areas, and also for
customers with special needs, such as children or elderly [2,4].

In the FRDARP problem, each customer requests to be transported be-
tween two terminals along the fixed route, at requested times. There are two
types of requests, called s-type and r-type. S-type requests have a deadline.
An s-type customer who requested to leave at a certain time cannot leave
later than that time, but could leave earlier. In the latter case, the customer
will reach the destination sooner than ideally wanted. R-type requests have
a release time. An r-type customer who requested to leave at a certain time
cannot leave before the requested time, but can leave at a later time. The
(positive) difference between the requested time and the real departure time
is called the waiting time of the passenger. Naturally, the passengers expect it
to be as minimal as possible. The aim in the presented FRDARP is to mini-
mize the sum of all the waiting times, for a given operational cost. The cost
is determined by the number of times a vehicle leaves the depot for its round
trip. The scheduler receives as input the requests, the vehicles’ working hours,
and the number of round transports. She is then expected to find a schedule
that will increase customer satisfaction by minimizing the total waiting time.

In [7] we have presented a polynomial algorithm to solve the FRDARP by
a reduction to the shortest path problem [8]. Based on the problem input, we
dynamically construct a graph. A shortest weighted path in this graph, which
starts at a source node and ends at a goal node, corresponds to an optimal
schedule. In Section 2 we fully describe the FRDARP and the reduction.

Though the presented method for solving the FRDARP is polynomial, its
implementation involves construction of huge graphs. As elaborated in Sec-
tion 3, this makes it difficult to find an optimal solution when the number
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of requests becomes large. The main contribution of this work is in obtaining
heuristic algorithms for improving the implementation of the solution method.
Using these heuristics considerably reduces the graph size, without compro-
mising the optimality of the solution. Improvement is done by setting pruning
rules that avoid creating duplicate representations of transports, or pruning
rules that do not develop an arc, when it is clear that it will not participate in
an optimal path. In Section 4 we present the pruning heuristics. Section 5 is
dedicated to experiments showing the improvement that is obtained by using
these heuristics.

2 FRDARP: the model and its relation to the shortest path
problem

2.1 Problem input

The problem input consists of:

– A vehicle fleet of size M . Vehicle m has capacity Cm (m = 1, 2, . . . ,M). It
starts working at time am and finishes working at time bm.

– A circular route with L terminals, including the depot. In each round,
which is also termed transport, a vehicle starts at a depot A0, goes through
terminals A1, A2, . . . , AL−1 in this order, and finally returns back to the
depot, which is also denoted AL. The ride time from Ai to Aj is denoted
Dij . The total transport time is D = D0L.

– A declared number of transports, which is denoted K. The cost of a trans-
port is assumed to be vehicle-independent.

– Ride requests. A request is determined by its type, either s-type or r-type, a
pick-up terminal Ai, a destination terminal Aj , and a desired pick-up time,
which is denoted sij or rij , for s-type and r-type requests, respectively. The
total number of requests is called N .

The ride requests are collected into sets. The set of all the s-type requests
from terminal Ai to terminal Aj is denoted Sij . The size of the set is denoted

N ij
S = |Sij |. An element sij ∈ Sij has a value, which is the desired pick-up time

of this request. We also define a normalized value s̄ij = sij −D0i; in order to
pick a customer from Ai at time sij the vehicle should depart from the depot
at time s̄ij . The normalized values form the set S̄ij . Note that the elements
in the described sets are the requests; two different requests are considered as
two different elements, even when they have the same value. The elements of
each set are indexed according to their value in a non-increasing order, e.g.,
if Sij = {sij1 , s

ij
2 , . . . , s

ij

Nij
S

} then sij1 ≤ sij2 ≤ · · · ≤ sij
Nij

S

. The letter l is usually

used for the index of an s-type request: sijl . We similarly define Rij , R̄ij , N ij
R ,

and the indexed elements rijh and r̄ijh , with h = 1, 2, . . . , N ij
R . Finally, we define

the sets R = ∪i,jRij , S = ∪i,jSij , and Q = S ∪R.
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2.2 A feasible solution for FRDARP

An FRDARP solution S is a triplet (P,V, T ), where:

– P = (P1, P2, . . . , PK) is a partition of the set of Q into K disjoint sets.
The partition part Pi represents the requests that are fulfilled by the ith
transport. For simplicity, a partition part is also called a transport.

– V = (v1, v2, . . . , vK) is a list of vehicle indices. Each vehicle is numbered
from 1 to M and, according to V, the ith transport is operated by vehicle
number vi.

– T = (t1, t2, . . . , tK) is a list of departure times. The ith transport departs
from A0 at ti.

A solution S = (P,V, T ) is feasible if it satisfies the following capacity,
partitioning, and time constraints:

1. Capacity constraint: The number of passengers on vehicle vi that operates
transport Pi, at any part of the ride, cannot exceed Cvi , the vehicle’s capac-
ity. Note that |Pi|, the total number of passengers that share a transport,
may be larger than Cvi because passengers are using only a part of the
circular route.

2. SR constraint: A request s̄ij can share a ride with a request r̄i
′j′ only

if r̄i
′j′ ≤ s̄ij . This leads to the following partitioning constraint, for a

mixed transport, i.e., one that contains both s-type and r-type requests.
Consider a mixed transport Pi. Denote the latest normalized r-type request
in Pi by rlast = maxr̄∈Pi

{r̄}, and the earliest s-type normalized request by
sfirst = mins̄∈Pi

{s̄}. The transport is feasible only if rlast ≤ sfirst.
3. Time constraints: The departure time ti of a feasible transport Pi must

satisfy rlast ≤ ti ≤ sfirst. An additional time constraint regards the work-
ing hours of the vehicle, i.e., avi ≤ ti ≤ bvi −D. Another time constraint
regards two transports that are operated by the same vehicle. If vi = vj
(with i 6= j), then the respective departure times must satisfy |ti− tj | ≥ D.

In the next section we define the objective function and discuss properties
of an optimal solution. We close this section by an example.

Example 1 Consider an FRDARP problem with M = 2 vehicles of capacity
C1 = C2 = 2, which are available from a1 = a2 = 8:00 until b1 = b2 = 16:00.
The route consists of L = 3 terminals (including the depot), A0 → A1 →
A2 → A3, and takes 90 minutes to complete. The number of transports is set
to K = 3. The normalized requests are shown in Table 1.

s̄011 s̄021 s̄131 r̄011 r̄121 s̄231 r̄231 s̄132 r̄131 r̄232

8:45 9:45 10:15 10:15 10:30 10:45 12:00 12:45 12:45 13:15

Table 1 Ride requests normalized to the respective departure times from the depot

The transport {s01
1 , s

02
1 , s

13
1 } is an example of a feasible transport. Though

the capacity of the vehicle is two, it can accommodate these three requests,
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because s01
1 frees her seat at terminal A1, which allows s13

1 to join the ride.
This transport should leave the depot not later than 8:45 in order to meet
the deadline requirement of sfirst = s̄01

1 . The transport {s13
1 , s

23
1 , s

13
2 } is not

feasible, as it violates the capacity constraint. The transport {s13
1 , r

01
1 , r12

1 } is
an example of a feasible mixed transport that must depart exactly at 10:15.
The transport {s23

1 , r
23
1 } is an example of a non-feasible transport, because it

violates the SR constraint. An example of a feasible solution is S = (P,V, T ),
with P = ({s01

1 , s
02
1 , s

13
1 , s

23
1 }, {r01

1 , r12
1 , r23

1 , s13
2 }, {r13

1 , r23
2 }), V = {1, 2, 1}, and

T = {8:45, 12:00, 13:15}.

2.3 The objective function and optimal solution properties

A given solution defines for each passenger, either sij or rij , an actual depar-
ture time, denoted adt(qij), where q may be either s or r. The waiting time of
a request is the difference between the desired and the actual departure times:
w(qij) = |qij − adt(qij)|. Our aim is to minimize the sum over the waiting
times of all the passengers, i.e., the objective function is W =

∑
q∈Q w(q).

Definition 1 A solution is called S-ordered if for any two terminals Ai and Aj ,

and any two requests sijl , s
ij
l′ ∈ Sij between these two terminals,

sijl < sijl′ ⇒ adt(sijl ) ≤ adt(sijl′ ).

We similarly define an R-ordered solution.

Definition 2 Given an FRDARP problem, we define the set of optional de-
parture times (ODT) as a set whose elements are the following values:

1. am + nD, with m = 1, 2, . . . ,M .
2. s̄ijl ± nD, with 0 ≤ i < j ≤ L, 1 ≤ l ≤ N ij

S .

3. r̄ijh ± nD, with 0 ≤ i < j ≤ L, 1 ≤ h ≤ N ij
R .

4. bm − (n+ 1)D, with m = 1, 2, . . . ,M .

In all of the above n = 0, 1, . . . , (K − 1). In addition, the value in ODT
must fit the working hours of the vehicles, i.e., they have to be larger than
min1≤m≤M{am}, and smaller than max1≤m≤M{bm} − D. In case one of the
above values is not, it is deleted from the set.

In [7] we have shown that if FRDARP has a feasible solution, then it is
always possible to find an optimal solution with the following properties:

1. It is both S-ordered and R-ordered.
2. For every t ∈ T , t ∈ ODT, i.e, every vehicle leaves the depot in a departure

time, which is an element of ODT.

The solution presented in Example 1 of Section 2.2 is an optimal solution
with these two properties. We have reached it by a reduction of the FRDARP
to the shortest path problem. The reduction procedure, which is based on
these two properties, is described in the following section.
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2.4 Reduction of FRDARP to a shortest path problem

In this section we show how to solve the FRDARP by a reduction to the
problem of finding a shortest path in a directed and weighted graph G. The
reduction has been previously introduced [7], and is inspired by a similar ap-
proach that we applied to an FRDARP with two terminals [8]. The graph is
constructed dynamically, starting from a source node. Two nodes that are con-
nected by an arc correspond to a possible transport. A path from the source
node to one of several goal nodes corresponds to a feasible schedule of the re-
spective FRDARP. The path that has the lowest total weight corresponds to
an optimal schedule. The algorithm is polynomial in the number of requests,
for a given number of terminals, vehicles and transports.

A node in G has (L− 1)(L+ 2) +M coordinates. The first (L− 1)(L+ 2)
coordinates are indices, which are related to the (L−1)(L+2) sets: Rij and Sij ,
where 0 ≤ i < j ≤ L. The other M coordinates are related to the M vehicles.
A node is a sequence (h_l; τ ). The symbol _ is used as a concatenation sign.
h = (hij) is a vector of indices that regard to r-type requests. For example, if
L = 3 then h = (h01, h02, h12, h13, h23). Similarly, l = (lij) is vector of indices
that regard to the s-type requests. Finally, τ = (τ1, τ2, . . . , τM ) is vector of the
availability times of the vehicles. A node (h_l; τ ) indicates that all requests
{rij1 , r

ij
2 , . . . , r

ij
hij} and {sij1 , s

ij
2 , . . . , s

ij
lij}, for the respective i and j, have been

handled, and that the vehicle m (m = 1, 2, . . . ,M) is available for the next
transport at time τm.

An arc connecting (h_l; τ ) and ((h+∆h)_(l+∆l); τ ′) represents a possi-
ble transport shared by {rijhij+1, . . . , r

ij
hij+∆hij} and {sijlij+1, . . . , s

ij
lij+∆lij}, for

all relevant pairs of i and j. The vector τ ′ is different from τ by only one
component, the one that represents the available time of the vehicle, which
operates this transport. The weight of the arc is its cost, i.e., the total waiting
time of the passengers in the transport.

In order to describe the structure and the construction of the graph, we
return to the FRDARP problem of Example 1. The source node in the con-
structed graph is node0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 8:00, 8:00), which means
that none of the requests has been handled yet, and that both vehicles are
available at 8:00. Note that the first five (zero) coordinates are related to
r-type requests, for the following ordered pairs of terminals: (01,02,12,13,23).
This order is kept also for the other five coordinates, which are related to s-
type requests. A goal node is of the form (1, 0, 1, 1, 2, 1, 1, 0, 2, 1; τ∗, τ∗∗), where
τ∗ and τ∗∗ might have any valid value smaller than b1 and b2, respectively.
Arcs and nodes are created, starting from the source node, by two steps: (1)
Choose a vehicle, create all the feasible transports, and represent each by
the index coordinates; (2) Consider all relevant departure times and represent
each possibility by a weighted arc leading to a node (with updated available
time for the operating vehicle). For example, let us choose vehicle v1 as a first
operating vehicle, and consider a transport handling {s01

1 , s02
1 , s13

1 , s
23
1 }. The

representative 10 index coordinates are (0, 0, 0, 0, 0, 1, 1, 0, 1, 1). This transport
should leave the depot between 8:00 to 8:45. If there are more s-type requests
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in the transport (as in this transport), than there is a dilemma. On one hand,
the weight of the arc will be minimum if the transport will leave at the latest
possible time. On the other hand, leaving earlier might be beneficial for the
next considered transports. So, in the case of a majority of s-type requests, we
need to generate nodes with all possible departure times from the ODT set, in
the relevant time slot, which is, in the example, between 8:00 and 8:45. When
the vehicle departs at the latter time, as an example, it will complete its 90
minute route at 10:15. Passengers s02

1 , s13
1 and s23

1 arrive at their destinations
60, 90 and 120 minutes ahead of time, respectively, thus their accumulated
waiting time is 270 minutes. The node in the graph that represents the state
after handling this transport is node1 = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 10:15, 8:00)
and the cost of the arc node0 → node1 is 270.

The described generating process (steps 1 and 2 above) continues from
each node, which is connected to the source node by less than K arcs. When
the graph is completed, a path of minimal weighted length from the source
node to any goal node, using at most K arcs, represents an optimal schedule.

We continue the example by considering a possible second transport that
accommodates requests r01

1 , r12
1 , r23

1 and s13
2 using vehicle v2. This transport

should leave the depot between 12:00 and 12:45 in order to meet the re-
spective release and deadline requirements of rlast = r23

1 and sfirst = s13
2 .

In this example, there are more r-type than s-type requests. When this is
the case, there is no dilemma regarding the departure time of the vehicle. It
should depart as early as possible, i.e., at 12:00 and finish at 13:30. Passen-
gers r01

1 and r12
1 will wait at their source terminals for 105 and 90 minutes,

respectively, whereas s13
2 will arrive at her destination 45 minutes ahead of

time. The node that represents the state after handling this ride is node2 =
(1, 0, 1, 0, 1, 1, 1, 0, 2, 1; 10:15, 13:30) and the cost of the arc node1 → node2

is 240.
The careful reader might have noticed that the above described trans-

ports belong to the optimal schedule, which was presented in Section 2.2.
The third transport accommodates the remaining requests r13

1 and r23
2 us-

ing vehicle v1. It will depart from the depot at 13:15 (as early as possi-
ble). The node that represents the state after handling this ride is a goal
node node3 = (1, 0, 1, 1, 2, 1, 1, 0, 2, 1; 14:45, 13:30) and the cost of the arc
node2 → node3 is 30. The presented path node0 → node1 → node2 → node3

is optimal for the FRDARP problem of Example 1 and represents a solution
of cost 540.

3 Graph traversal

The original idea for solving FRDARP was to use the constructed graph of
Section 2.4, and to run on it K iterations of the Bellman-Ford algorithm [1]
in order to find the shortest path [7]. The Bellman-Ford algorithm traverses
the graph similarly to breadth-first search (BFS) [3], and needs to maintain all
the graph nodes in memory at all times.
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We have recently attempted to implement the above solution method for a
new transportation solution for the elderly that is based on FRDARP. We have
found out that elderly people living in nursing facilities have transportation
needs of rather limited dispersity, e.g., medical clinic, community center, and
supermarket [4]. Therefore, a transportation solution with a flexible schedule
and a circular route going through these places, starting and ending in the
nursing facility (depot), may very well fit their needs. However, even though
the FRDARPs to be solved were of rather limited size (N ≤ 20 daily requests),
the resulting graphs (on which the Bellman-Ford algorithm should run) turned
out to be very large and the solver ran out of memory.

To this end, we propose to traverse the graph in depth-first search (DFS) [3]
manner by using a classical Branch & Bound procedure. A major advantage
of DFS traversal lies in its memory usage – in DFS there is no need to main-
tain the graph nodes in memory. Moreover, the Branch & Bound procedure
reaches very quickly a first valid solution (not necessarily optimal) and can
consequently use this solution as an initial bound. In order to understand the
merits of holding such a bound, let us, for the sake of clarity, term a path con-
sisting of less than K arcs that has not reached a goal node, as a partial path.
Now, every time the cost of a partial path reaches the bound, the remainder
of this path can be pruned. The bound is updated every time a new better
solution is discovered.

The above basic pruning of the Branch & Bound procedure helps in some
extent to reduce the search space, and serves as a good first step for reducing
the actual graph size. In the next section, we propose several domain-specific
heuristic that considerably enhance the effectiveness of pruning.

4 Pruning heuristics

We propose herein various heuristics for pruning the FRDARP search space.
We separate the heuristics into two types according to their main motif of
pruning – redundancy-removal heuristics and path-removal heuristics. Broadly
speaking, the redundancy-removal heuristics (Sections 4.1 and 4.2) attempt to
a priori identify multiple paths in the graph that ultimately lead to equivalent
solutions, and consequently remove redundant paths. On the other hand, the
path-removal heuristics (Sections 4.3 and 4.4) aim to a priori identify paths
that lead to either infeasible solutions or solutions that are not optimal, and
consequently completely remove them.

4.1 SR redundancy

Consider nodeSR that represents a state in which there are both s-type and
r-type unhandled requests, and the earliest normalized unhandled request is
an s-type request, denoted sfirst. In this situation a single transport cannot
possibly handle all the remaining requests, because sfirst prevents a mixed
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transport with the r-type requests (SR constraint in Section 2.2). The SR re-
dundancy heuristic prevents at nodeSR the development of any arc (transport)
Pr that contains only r-type requests. It can do so, without compromising the
completeness (optimality) of the solution, since developing transport Pr at this
stage leads to redundant paths and can therefore be pruned.

Lemma 1 Developing an arc for transport Pr at nodeSR is redundant.

Proof Denote by Ps any arc (transport) that fulfills the early s-type request
sfirst. It may potentially include additional s-type requests, but not r-type
requests, due to the SR constraint. So clearly any two potential transports Ps
and Pr do not share any mutual requests. We consider two cases according to
the vehicles vs and vr that operate the respective transports Ps and Pr:

– vs = vr: In case the same vehicle operates both Ps and Pr it will have to
perform the Ps transport before Pr. This is because Ps must depart from
the depot not later than sfirst, and the r-type passengers in Pr must all
depart later than sfirst. Consequently, Ps should be developed before Pr.

– vs 6= vr: In case different vehicles operate Ps and Pr then the two transports
have absolutely no effect on each other. Consequently, developing Ps at
nodeSR followed by the development of Pr is exactly the same as developing
Pr at nodeSR followed by the development of Ps.

Considering both cases, it is redundant to develop arc Pr at nodeSR. ut

Corollary 1 The SR redundancy heuristic does not compromise the optimal-
ity of the obtained solution.

To exemplify the SR redundancy heuristic, consider node0, the source node
in Example 1. node0 is an example of nodeSR, since it has unhandled requests
of both types and the earliest is an s-type request (sfirst = s01

1 ). Now consider
two possible transports, Ps = {s01

1 , s
02
1 , s

13
1 , s

23
1 } to be operated by v1 and

Pr = {r01
1 , r12

1 , r23
1 } to be operated by v2. In case we handle ride Ps first we

reach node1 = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 10:15, 8:00), and after also handling
ride Pr we reach node2′ = (1, 0, 1, 0, 1, 1, 1, 0, 1, 1; 10:15, 13:30). Conversely, if
we start with ride Pr we reach node1′ = (1, 0, 1, 0, 1, 0, 0, 0, 0, 0; 8:00, 13:30),
and after handling ride Pr we reach exactly the same node2′ with exactly the
same costs as in the first case. This redundancy is illustrated in Figure 1.

4.2 Equal capacity redundancy

Consider nodeEC in the graph and a potential transport P that can be op-
erated by two or more vehicles of equal capacity CEC . Denote by vfirst the
earliest available vehicle of capacity CEC , with ties broken according to the
vehicle index. The equal capacity redundancy heuristic prevents at nodeEC
the development of more than a single arc for transport P with equal capac-
ity vehicles, i.e., it considers at most a single vehicle vfirst of each capacity
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0 2’

1’

1

Fig. 1 SR redundancy illustration

CEC to operate transport P . It can do so, without compromising the com-
pleteness (optimality) of the solution, since developing at this stage additional
arcs of the same transport, operated by vehicles of the same capacity, leads to
redundant paths and can therefore be pruned.

Lemma 2 Developing an arc for transport P operated by a vehicle vother 6=
vfirst with capacity CEC at nodeEC is redundant.

Proof We consider two cases according to the availability times τother and
τfirst of the respective vehicles vother and vfirst:

– τother = τfirst: The redundancy in this case is trivial, because there is ab-
solutely no difference between vehicles vother and vfirst,

– τother > τfirst: The only reason to prefer the later-available vother over

vfirst is to free up vehicle vfirst for operating some other transport P ′ that
needs to departure earlier. However, this possibility would be accounted for
anyway, because when the arc for transport P ′ will be considered it would
be operated by vehicle vfirst (for exactly the same reason that transport P
is operated by vfirst). As a consequence, transport P would be considered
to be operated by vehicle vother later on along that path. Thus, considering
vother for operating transport P at nodeEC is redundant.

According to the way that vfirst was selected it holds that τfirst ≤ τother, thus
considering both above cases, it is redundant to develop an arc operated by
vother for transport P at nodeEC . ut

Corollary 2 The equal capacity redundancy heuristic does not compromise
the optimality of the obtained solution.

To exemplify the equal capacity redundancy heuristic, consider node0, the
source node in Example 1. node0 is an example of nodeEC , since it has two
vehicles of equal capacity (C1 = C2 = 2), both available (τ1 = τ2 = 8:00).
Now consider a possible transport P = {s01

1 , s
02
1 , s

13
1 , s

23
1 } to be operated by

either v1 (vfirst) or v2 (vother). In case vehicle v1 operates transport P we
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reach node1 = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 10:15, 8:00). In case vehicle v2 operates
transport P we reach node1′ = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 8:00, 10:15). Nodes
node1 and node1′ are clearly equivalent. This redundancy is illustrated in
Figure 2.

0

1’

1

Fig. 2 Equal capacity redundancy illustration

4.3 Infeasible capacity path removal

Consider an arc nodeA → nodeB , which is developed during the DFS traversal.
We assume that the arc represents a feasible transport, i.e., it satisfies the SR
and capacity constraints, and that it is not a goal node. The removal criterion
that is described in this section accounts for arcs that, though feasible, will
necessarily not be a part of a feasible solution due to capacity considerations.

The idea behind the infeasible capacity path removal heuristic is that for
each developed arc there is an upper bound for the number of requests that can
be fulfilled, in between any two consecutive terminals, by the later developed
arcs. The heuristic prevents the development of arcs for which this bound ex-
ceeded. More specifically, the bound is determined by the number of remaining
transports, and by the maximal capacity C∗ = max{C1, C2, . . . , CM}. When
considering an arc nodeA → nodeB during DFS construction, we know the
number of arcs leading to nodeB from the source node in the considered path.
Denote this number by Kpath. This defines the number of remaining trans-

ports K̃ = K −Kpath. The maximal number of requests that can be fulfilled

in any particular segment of the route is restricted by Nmax = K̃ · C∗.
Given a developed arc, we also know the number of remaining requests

that should be fulfilled. Denote the integer coordinates of nodeB by (h_l),
where h = (h01, h02, . . . , hL−1,L) and similarly l = (l01, l02, . . . , lL−1,L). Then
the number of remaining requests from terminal Ai to terminal Aj is given by

Ñ ij = N ij
S +N ij

R−(hij+lij). Finally, the number of remaining requests between

two consecutive terminals Ak and Ak+1 is given by Ñk =
∑k
i=0

∑L
j=k+1 Ñ

ij . If
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the considered arc is part of a feasible path, then it must hold that Ñk ≤ Nmax,
for each k = 0, 1, 2, . . . , L− 1. This proves the following lemma.

Lemma 3 An arc for which max{Ñ0, Ñ1, . . . , ÑL−1} > Nmax can be removed
from the graph that represents the respective FRDARP.

Corollary 3 The infeasible capacity path removal heuristic does not compro-
mise the optimality of the obtained solution.

To exemplify the infeasible capacity path removal heuristic, consider node0,
the source node in Example 1. node0 is an example of nodeA. Now consider
nodeB whose integer coordinates are (0, 0, 0, 0, 0, 1, 1, 0, 1, 0). The arc nodeA →
nodeB represents the transport of {s01

1 , s
02
1 , s

13
1 }. The number of remaining

transports is K̃ = 2 and the maximal capacity is C∗ = 2. Hence, the maximal
number of requests that could be treated in a given route segment is Nmax = 4.
However, among the remaining seven requests, there are five requests that use
the route segment between terminals A2 and A3, i.e., Ñ2 = 5. These are
s23

1 , r
23
1 , s13

2 , r
13
1 , and r23

2 . Since Ñ2 > Nmax this arc can be removed from the
graph.

4.4 A*-based path removal

The A* algorithm [6] is a classical graph traversal algorithm, often used
for minimal path search. The classical A* traverses the graph in a best-first
search [10] manner, which we do not use herein due to its space requirements
(see Section 3). However, we can adopt the node expansion strategy of A* as
an additional pruning heuristic.

When the A* algorithm needs to decide whether to expand a node in
the graph, say nodei, it considers two values – the cost g(nodei) of the path
from node0 (the source node) to nodei, and a heuristic estimate h(nodei) of
the cost of the optimal path from nodei to any goal node. A heuristic h(·)
is called admissible if its estimate is never larger than the real cost of the
optimal path from nodei to a goal. Therefore, when h(·) is admissible, the
sum g(nodei) + h(nodei) can serve as an optimistic view for the potential
of the current partial path going through nodei. When nodei is expanded,
g(nodei) is already known. Consequently, the challenge in achieving efficient
pruning lies in the development of an admissible heuristic h(·) that is both fast
to compute and tight, in the sense that its estimate is as close to the actual
optimal value as possible.

We propose herein a heuristic h(·) that focuses on the set of yet unhan-
dled requests Q̃ ⊆ Q. The main idea is to look at the differences between the
request times in Q̃. The differences between requests correspond to costs that
would definitely be applied in case these requests share the same ride. However,
considering all combinations of unhandled requests, including taking into ac-
count their types and pick-up/destination terminals, is computationally heavy.
Therefore, we completely disregard the request types and pick-up/destination
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terminals, and consider just a sequence of the unhandled ride requests Q̃,
ordered according to their requested times. Relating only to consecutive el-
ements is optimistic, as is required for the admissibility of the heuristic, for
the following reasons. On one hand, such pairs of elements (passengers sharing
a ride) are generally “cheaper” than non-consecutive elements. On the other
hand, they may turn out to be infeasible, due to the disregard of request types
(e.g., SR constraint) and terminals (e.g., capacity constraint).

Input: set of unhandled requests Q̃, number of remaining transports K̃
Output: value of h(·)

1 sort Q̃ according to the request times

2 ∆ = multiset of time differences between consecutive elements in Q̃
3 sort ∆ in reverse order

4 remove the first (highest) K̃ − 1 elements from ∆
5 initialize hval and factor to zero
6 for index = 0 . . . (|∆| − 1) do

7 if index mod 2 · K̃ = 0 then
8 increment factor by 1
9 end

10 increment hval by ∆(index) · factor
11 end
12 return hval

Algorithm 1: Computation of h(·)

The computation of our proposed h(·) is given in Algorithm 1. It starts with
the sorting of Q̃ (line 1). Then, in line 2, a multiset ∆ is generated, consisting
of the request time differences between every pair of consecutive elements in
Q̃. (∆ is a multiset because it may contain several repetitions of the same time
difference.) Next, ∆ is sorted in reverse order (line 3) followed by the removal
of its first (highest) K̃ − 1 elements (line 4). K̃ remaining transports mean
that K̃ − 1 time-request differences can be removed without cost, because
their respective passengers can be separated to different transports. For the
sake of admissibility we remove the most costly K̃ − 1 differences.

Two variables are introduced and initialized in line 5 – hval, the value
of h(·) that needs to be computed, and factor that represents the minimal
number of times a cost difference should be accounted for in the computation
of hval. To understand the concept of factor consider an adt of a ride that is
earlier than the ride time requests of three (s-type) passengers on that ride.
The difference between the adt and the latest of these three request times
will be accounted for three times, once for the cost of each passenger, i.e., the
factor should be 3 in this case. However, the difference between the request
times of the first and second passengers will only be accounted for once for
the cost of the first passenger, i.e., the factor should be 1 in this case.

Now we continue to the main loop (lines 6-11), which visits all the remain-
ing elements of ∆ (after the removal in line 4). In index = 0 and later in every
2 · K̃ iterations the factor increases by 1 (lines 7-8). Consider again the time
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difference between the requests of the first and second passengers from the last
example. It has a factor of 1 because it is in the “border” of the ride (no pas-
senger with a later request than the first). However, there may also be a similar
border for r-type requests of earlier time than adt. Moreover, any remaining
transport of the K̃ can have two such borders. Thus, for sake of admissibility
we consider the maximal number of possible time differences accounted for
before the factor grows. Next, in line 10, each time-difference value in ∆ is
multiplied by the corresponding factor at that time of the computation, be-
fore being added to hval. Naturally, for the optimistic scenario needed herein,
we must consider that the high differences (high costs) are multiplied by low
factor values, and vice versa, and this is indeed achieved by starting with the
highest values in ∆ (recall the reverse ordering in line 3). Finally, in line 12,
the accumulated hval is returned as the output of the computation.

Lemma 4 The h(·) heuristic of Algorithm 1 is admissible.

Proof In Algorithm 1 we relate to the unhandled requests Q̃ without regarding
their types and terminals. By disregarding the terminals, the problem becomes
a simple case of the two-campus transport problem (TCTP) [8]. It has been
proven that there always exists an optimal solution that groups together in a
ride only consecutive request times (according to each type) [8, Theorem 1].
In Q̃ we also disregard the types, so now grouping together only consecutive
request times is definitely optimistic (though probably infeasible). As a conse-
quence, we can relate only to the costs of consecutive ride requests, i.e., their
time differences (∆). A best-case optimal solution may (i) potentially rule-out
the most costly differences, and (ii) repeat as few times as possible the costs
of the remaining costly differences. This is exactly what happens in line 4, and
in the loop of lines 6-11, respectively. Consequently, the returned hval serves
as an optimistic lower bound to the actual cost for the remaining requests Q̃
and transports K̃. ut

Following the admissibility of h(·), the A*-based path removal heuristic
does not expand any nodei for which g(nodei) +h(nodei) ≥ UB, where UB is
the cost of the best solution found so far. The upper bound UB is maintained
as part of the Branch & Bound procedure (Section 3).

Corollary 4 The A*-based path removal heuristic does not compromise the
optimality of the obtained solution.

To exemplify the computation of h(·) in the A*-based path removal heuris-
tic, consider node0, the source node in Example 1. Given that node0 is a source
node, we have Q̃ = Q and K̃ = K = 3. The ride requests Q are already ordered
(line 1) in the presentation of Table 1, so we continue to present in Table 2
the corresponding ∆ and ordered ∆ (lines 2 and 3).

After the execution of line 4, the two (K̃ − 1) highest costs (75 and 60)
are removed from ∆. Their remain 7 elements in ∆ to be considered in the
main loop (lines 6-11). The factor is incremented every six (2 · K̃) iterations,
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∆ 60 30 0 15 15 75 45 0 30

Ordered ∆ 75 60 45 30 30 15 15 0 0

Table 2 ∆ and ordered ∆ in the computation of h(node0)

so only the last element, which is zero anyway, is multiplied by factor = 2.
So the computed hval is (45 + 30 + 30 + 15 + 15 + 0) · 1 + 0 · 2, resulting in
h(node0) = 135. Note that in case this was not a source node, the cost g(node)
of the path until node would have been added for the comparison with the
current UB.

5 Experimental evaluation

We have implemented an FRDARP solver based on Branch & Bound (Sec-
tion 3) and all the presented pruning heuristics (Section 4) in Java. In the
experiments we evaluate six versions of the algorithm – a basic version with-
out any pruning heuristic, four versions that apply a single heuristic each, and
a full version that incorporates all four heuristics. By that we can learn about
the effectiveness of each of the heuristics, and also examine their combined
effect. The experiments were executed on a hardware comprised of an Intel
i7-6820HQ processor and 32GB memory.

In order to evaluate the efficiency of the proposed pruning heuristics we
chose a setting that is based on a transportation solution for elderly people
living in nursing facilities [4], see Section 3. The basic setting includes N = 15
ride requests, M = 2 vehicles of capacity C1 = C2 = 5, which are available
from a1 = a2 = 7:00 until b1 = b2 = 19:00. The route consists of L = 4
terminals (including the depot), and takes 60 minutes to complete. The number
of transports is set to K = 3.

We create 50 instances for each setting in each of the experiments, and
present the mean values of these 50 instances. The instances differ in the ride
requests. For each ride request in an instance we randomly choose its type
(s-type or r-type), its two terminals (pick-up and destination) and its desired
pick-up time (every 15 minutes within the working hours of the vehicles).

Our experiments examine the percentage of problems that can be (opti-
mally) solved within a short period of time, where the timeout is set to one
minute. In each experiment we focus on some parameter in order to observe
its effect.

We begin with the number of ride requests parameter, which varies in the
range 9 ≤ N ≤ 21, while all other parameters remain fixed according to the
basic setting. The results are shown in Figure 3.

Next, we focus on the vehicles’ capacity parameter, which we vary in the
range 3 ≤ C ≤ 7. However, changing only the capacity may result in unsatisfi-
able problems (when C is too small) or in rather easy problems (when C is too
large). To this end, we would like to maintain a balance between the number of
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Fig. 3 Percentage of 1-minute solved problems with varying number of ride requests N

ride requests and the overall capacity (considering both the number of trans-
ports and the vehicles’ capacity), according to the formula N = K · C. Note
that since passengers free up places in intermediate terminals, this initially
tight-looking ratio usually corresponds to satisfiable problems. Thus, in this
experiment, shown in Figure 4, we also accordingly vary the number of ride
requests in the range 9 ≤ N ≤ 21, where the number of transports remains
K = 3 as in the basic setting.
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The last parameter we study is the number of transports, which we vary in
the range 2 ≤ K ≤ 4. Again, we maintain the balanceN = K·C. Consequently,
in this experiment, depicted in Figure 5, we also vary the number of ride
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requests in the range 10 ≤ N ≤ 20, where the vehicles’ capacity remains
C = 5 as in the basic setting.
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The presented results shed light regarding the performance of the proposed
heuristics. Each of the heuristics on its own improves the practical solvability
of FRDARP, but interestingly their combination is considerably more efficient
than any single heuristic. This phenomenon suggests that the heuristics do
not overlap much and are able to prune different parts of the constructed
graph. This comes as no surprise given that the four heuristics use completely
different ideas that lead their pruning strategies. Further insight regarding
the combined effectiveness of the four heuristics can be gained by observing
the sizes of obtained graphs without and with the heuristics. For example, the
number of developed nodes for instances of the basic setting, which were solved
within the 1-minute timeout, reduced from ∼ 300K to ∼ 5.5K on average.

Out of the four heuristics, the infeasible capacity heuristic performs best
in most settings. It is actually only outperformed by the A*-based heuristic
in rather easy settings (N = 11,N = 13 in Figure 3 and C = 4 in Figure 4).

Turning the spotlight to the A*-based heuristic, its performance seems to
deteriorate as the problems become harder (in terms of number of passengers
or vehicle capacity, see Figures 3 and 4). This suggests that although the
basic idea of the heuristic has potential (as witnessed in its performance in
the easy settings), the value of h(·) for hard instances is not tight enough,
i.e., not close enough to the actual cost. Indeed, in the computation of h(·)
we completely disregard the types and terminals of unhandled ride requests
(Algorithm 1, line 1). The idea was to make the computation fast. However,
for harder problems we may consider performing a more complex and tighter
computation of h(·) that may result in increased overheads, but at the same
time significantly reduce the size of the constructed graph.

240

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Tal Grinshpoun et al.

6 Conclusion

The main contribution of this paper is in presenting and investigating pruning
heuristics for the FRDARP model. In Section 2 we have presented the FR-
DARP model, including the reduction to the shortest path problem. A side
contribution of this paper lies in the compactness of this presentation. We
also believe it is more fluent and accessible, and in addition, it includes an
illustrating example, which was missing in the first paper on this subject [7].

Regarding the pruning heuristics, we have presented four heuristics. Two
of the heuristics attempt to identify and remove redundant paths, whereas
the objective of the other two is to rule-out paths that are provably infeasible
or non-optimal. According to our experimental evaluation, all the heuristics
perform well and improve the practical solvability of FRDARP. However, the
most interesting phenomenon is that their combined effort is considerably more
efficient than any single heuristic, probably due to their completely different
pruning strategies.

With the help of these pruning heuristics, the model is now more applicable
for use in real-life problems, as well as in more complex variants of the model.
For example, one can regard adding the option for vehicles to wait at inter-
mediate terminals. There are some real-life scenarios in which such waiting is
acceptable by the passengers, e.g., train connections in major stations. This
option may reduce the value of the objective function, because new scheduling
possibilities arise. For example, a vehicle that previously could not peak an
r-type passenger from an intermediate station, can now wait in order to pick
up this passenger. This can reduce the waiting time of passengers and may
also lead to better vehicle availability. However, the option to wait at inter-
mediate terminals is expected to increase the graph size, because of these new
possibilities. Therefore, pruning heuristics are crucial for the applicability of
such a complex variant.
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