207

Solving Vehicle Routing and Scheduling with
Delivery and Installation of Machines using ILS

Valon Kastrati - Arben Ahmeti - Nysret
Musliu

the date of receipt and acceptance should be inserted later

Abstract We propose a new method based on iterated local search to solve
a Vehicle Routing and Scheduling problem that was recently introduced in
the VeRoLog Solver Challenge 2019. Our algorithm includes several neigh-
borhood search operators and destroy/repair heuristics. We propose two new
neighborhood operators aiming to address conflicts between requests and trips
for better allocation on days, vehicles and routes. Our algorithm was one of
the competitors of the VeRoLog Solver Challenge where 13 different teams
participated by submitting solutions for the instances from the all-time-best
challenge. Results on twenty-five instances presented by the organizer of the
challenge show that our approach provided second best result for one of the
instances, for six instances third best and for most of the rest fourth best
result.

Keywords Vehicle Routing - Scheduling - Metaheuristics

1 Introduction

The class of Vehicle Routing Problems is a family of combinatorial optimiza-
tion problems that arise in the field of logistics. Capacitated Vehicle Routing
Problem (CVRP) is the simplest and most well-known variant, whose objective

Valon Kastrati
Vienna University of Technology, TU Wien
E-mail: e1634370Q@student.tuwien.ac.at

Arben Ahmeti
Institute of Logic and Computation, DBAI, TU Wien
E-mail: aahmeti@dbai.tuwien.ac.at

Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and
Scheduling, Institute of Logic and Computation, DBAI, TU Wien

E-mail: musliu@dbai.tuwien.ac.at

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

208

Valon Kastrati et al.

is to find a sequence of visits for each truck and minimize the total distance
travelled, where all the customers are served, and the sum of demands for each
truck does not exceed the maximum capacity of a truck. CVRP instance that
uses only one truck with unlimited capacity is equivalent to the Travelling
Salesman Problem (TSP) which serves as proof that CVRP is also NP-Hard
problem. In CVRP all the routes start and end at a single depot, and the
number of trucks is not important. Different variations and extensions of VRP
have been defined and proposed as a result of many practical applications re-
sulting in several types of constraints and objectives. For example, there are
variations of VRP that include pickup and delivery requests (VRPPD), soft
or hard time window for the requests (VRPTW), multiple depot (MDVRP).
Vehicles might have different capacities (Heterogeneous VRP) and they are
allowed to make multiple trips (Multitrip VRP). For a more comprehensive
overview of the classification of VRP problems see [I].

As the number of models of VRP grows continually, so does the number
of methods and approaches proposed by researchers. Classical methods in-
clude several construction heuristics, for example, the Clarke and Wright sav-
ings algorithm. The Clarke and Wright heuristic, proposed at [2], repeatedly
merges two routes (starting from single request routes) by maximizing their
savings. Other important construction heuristics are the nearest neighbor and
the cheapest insertion, proposed by [2I], that work by inserting requests into
routes following a strategy such as nearest neighbor or cheapest insertion.

Well-known classical algorithms include inter-route improvement methods
(k-opt moves based on TSP problem [11]), intra-route improvements like A-
interchanges [15], Or-opt [14] and other move operators that basically ex-
change or relocate a number of customers between different routes or vehicles.

Further improvement of solutions was only possible with the use of meta-
heuristics based on a single solution and a population of solutions. Simulated
annealing was proposed by [I5], tabu search was implemented in the algorithm
proposed by [3] to solve vehicle routing problems with time windows. Large
neighborhood search is used by many authors in general and one of the most
successful algorithms was Adaptive LNS, proposed by [16], which was able to
solve five different variants of VRP: VRPTW, VRPMD, OVRP, SDVRP, and
CVRP. The approach proposed in [7] was to use Variable Neighborhood Search
with operators such as 2-Opt, Or-Opt, inter-route relocate, or inter-route ex-
change embedded in Adaptive Large Neighborhood Search. A heuristic search
method that only uses a single neighborhood was proposed by [6]. It focuses
on techniques of fast manipulation of memory data during the preprocessing,
checks, and different speedups. In [I0] the problem is divided into the techni-
cians and the deliveries subproblems, where the first one is treated as a Set
Covering Problem and the second part is treated and solved as a Bin Packing
Problem.

In this paper, we focus on the problem of Routing and Scheduling of De-
livery and subsequent Installations of machines. This variant of VRP was

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

209

Solving VRPDIM using ILS

introduced on the VeRoLog Solver Challenge 2019 EL organized by EURO
Working Group on Vehicle Routing and Logistics Optimization (VeRoLog E[)
and ORTEC [g].

The challenge was organized in two parts: the first one was called all-time-
best challenge and the second restricted resources challenge. In all-time-best
challenge there were no restrictions in time or technology that could be used
to solve the problem, and there was a set of 25 instances called ”Early” that
were made available in the challenge. For the second part of the challenge, the
participants had to submit an algorithm that was used by organizers to solve
instances from the ”"Hidden” set. In the restricted resources challenge there
was a time limit for an instance based on formula t = f % (10 + n), where f
is the factor of the computing machine, n is the number of requests in the
instance and ¢ is time in seconds.

VeRoLog Solver Challenge 2019 attracted the attention of several researchers
and 13 different teams participated by submitting solutions for instances from
all-time-best challenge. After this stage of the competition was closed, 8 best
teams were selected to participate in the restricted resources challenge. Or-
ganizers determined the final ranking for restricted resources challenge after
running the solvers submitted by each finalist for the hidden set of instances.

Main contributions presented in this paper are:

— A new approach for Vehicle Routing and Scheduling with Deliveries and In-
stallation of Machines. We present a local search comprised of min-conflicts,
nearest neighbor and destroy and repair heuristics embedded in an iterated
local search framework.

— Introduction of several neighborhood operators including two new neigh-
borhoods for the VRP problem.

— Evaluation of our approach with three sets of benchmark instances pro-
posed at different stages of the VeRoLog Solver Challenge 2019.

The final results of restricted resources challenge were announced in VeRoLog
Meeting in Seville on 4 June 2019 EL with top three teams giving their presen-
tations at the conference.

2 Problem Description

Vehicle Routing Problem with Delivery and Installation of the Machines (DIM)
is one of the newest problems in VRP, that was introduced by the EURO
Working Group on Vehicle Routing and Logistics Optimization (VeRoLog)
and ORTEC (see [§]). DIM is an extension of CVRP that combines routing
and scheduling aspects, which optimizes the distribution and installation of
vending machines on specific days. There is a planning horizon spanning over
a given number of days, different kinds of machines, and a set of technicians

1 https://verolog2019.ortec.com/
2 http://www.verolog.eu/
3 https://verolog2019.sciencesconf .org

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

https://verolog2019.ortec.com/
http://www.verolog.eu/
https://verolog2019.sciencesconf.org

210

Valon Kastrati et al.

with different skills and different starting locations. Requests from customers
contain details such as the first and the last day within which a machine must
be delivered, the number of machines and type of machine. If a customer re-
quires different kinds of machines, then a request exists for each kind. Machines
have different sizes which must be taken into account when loaded into trucks
since trucks have a limited capacity. Delivery of machines is performed by a
fleet of identical trucks and each of them starts and ends the day in the depot.
Trucks can return many times in depot during a day but they also have a
limited maximum daily distance. After deliveries are made, installations must
be performed as soon as possible starting from the following day, otherwise,
there is a penalty for each day the machine installation is delayed. There is a
set of technicians that have different skills, meaning they can only install spec-
ified kinds of machines. Each technician may have a different home location,
where they start and end a route. They have a limited daily distance, a lim-
ited number of locations to visit and they have to take two days off after five
consecutive days of work. For each kind of machine, there is a cost associated
with each day between delivery and installation. The objective is to minimize
the total cost which includes the weighted sum of these components: total
distance travelled by trucks, number of total trucks, truck days (a day when a
truck is used), total distance travelled by technicians, number of technicians,
technicians’ days, and waiting times of machines for installations. Distances
between locations of the depot, customers, and technicians are calculated as
the ceiling of the Euclidean Distance.

In DIM problem, we are given a set of requests R = {1,2,...,n}, and
a set of days D = {1,2,...,dmaz }- Each r € R has its attributes including
location, first and last day between which machines must be delivered, type
of machines, and the number of them. The set T' = {1,2, ..., tjaz } contains all
the technicians where each of them has a home location and a flag for each
kind of machine that shows if the technician is able to perform the installation
of that kind of machine. Each location is given as a pair of coordinates (z,y),
and the distance between any two locations is calculated with this formula
d = [\/(zi —25)? + (yi — y;)?]

The aim is to design a set of vehicle routes DRy, = {dri,dre,drs,...}
for the deliveries, and a set of technician routes for the installations IRg =
{iry,irq,irs, ...} for each day d € D, each vehicle, and each technician ¢t € T.

Each route dr; € DRy, starts from the depot, delivers the machines to
the customers, and ends at the depot. Also, each route ir; € I Ry starts from
the location of the technician ¢, performs the installation of the machines,
and ends at the starting location. We are also given a weight parameter for
each component of the cost, including: (1) vehicle distance, (2) vehicle days,
(3) vehicles’ number, (4) technicians’ distance, (5) technician days and (6)
number of technician employed. And at the end, there are the cost parameters
for each kind of machine, for the number of days a machine waits for the
installation (7). The goal is to minimize the total cost which is a sum of seven
components mentioned above and fulfill all hard constraints which are: for each
request, delivery must be done between the first and last day, and installation

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

211

Solving VRPDIM using ILS

can be performed starting from the following day of its delivery. A truck has
a limited capacity of machines it can deliver during one trip, and maximum
distance it can travel during a day. Technicians have a set of skills that specifies
which kinds of machines they can install, a maximum distance they can travel
during a day, and a maximum number of requests they can execute during a
day. Technicians are only allowed to work 5 consecutive days at maximum,
and if they do, then they are forced to take two days off.

3 General Description of our Approach

Our approach introduces several innovative ideas such as applying several new
neighborhood operators that rely on min-conflicts, destroy-repair, and nearest
neighbors heuristics for delivery and installation of machines (DIM) problem.
The proposed components operate within the framework of Iterated Local
Search (ILS) algorithm (algorithm [I]).

ILS framework includes four main components: initial solution, embedded
local search, acceptance criteria and perturbation. In this section we describe
our approach in details.

3.1 Solution representation

Solution candidates are represented using a data structure that includes several
entities: days, vehicles, vehicle trips and routes, delivery requests, technicians,
technician routes and installation requests. Since the delivery of the machines
is done separately from the installation of the machines, then we refer to them
as delivery requests and installation requests.

These entities are organized in a hierarchical way so that they reflect the
relationship between each of them. A solution contains a vector of days and
each day has two lists: the vehicle routes and technician routes. The vehicle
routes contain the list of delivery requests assigned to a vehicle, including the
returns of the vehicle to the depot during the day. We use the concept of the
trip which represents a part of the route that starts and ends at the depot, to
allow the trips to be assigned to different vehicles or even different days. The
technician routes contain the installation requests. This approach is known in
the literature as 'cluster first-route second’ paradigm, where first we create the
groups of the request that are assigned to days and vehicles (cluster), and then
every cluster is treated as a TSP problem. This hierarchical decomposition
into subproblems was proposed by several authors such as [5], [4] and [19]. In
the case of our problem, we can perform another decomposition by dividing
the deliveries and installation schedules, because they can be treated as two
dependent VRP problems.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

212

Valon Kastrati et al.

Algorithm 1 ILS for DIM problem

s < Initial Solution()
s s
gap < 0
repeat
s1 + MoveTrip(s) or
s1 « SwapTrips(s)
Through roulette wheel set order of:
sa < RemovelnsertDeliveriesStack(s1)
s3 < RemovelnsertInstallationsStack(sz)
s4 < RegionGroupingN N (s3)
s5 < LoopSwap(s4)
s < SwapInstallations(ss)
S < Sg
if (s < s”) then
s s
gap < 0
else
gap < gap +1
if (gap > k) then
gap < 0
Intensify search :
s7 < RelInsertDeliveriesSerial(s)
sg < RelnsertInstallationsSerial(s7)
sg < BestSwapWithN N Days(sg)
s10 < BestSwapWithN N DaysInst(sg)
S < S10
if (s < s”) then
s s
end if
Perturbate s :
sp1 PerturbSwapT'rip(s)
sp2 < PerturbRelnsertDeliveriesStack(sp1)
8 < Sp2
end if
end if
until timeExpired

3.2 Initial solution

After the empty solution is populated with empty routes for each technician,
we start the generation of an initial solution by adding the installations in
the first feasible position in available technician routes in the given order of
technicians and requests. If no feasible position is found for a request, then
we perform backtracking by removing the previous requests and inserting the
current one (this approach has been successful for all the instances we exper-
imented with). In the next step, we add the deliveries in the same way, by
adding each of them in the first available truck. The insertion of installations
is more critical because of the hard constraints such as technician skills, tech-
nician days-off, a limited number of visits per day, and limited daily distance.
This is not the case for deliveries, because the number of trucks is not limited.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

213

Solving VRPDIM using ILS

It is worth noting that in this phase we only take care of the feasibility of the
solution.

3.3 Local search and neighborhood structures

Local search is based on several neighborhood structures and is conducted in
two stages. The first one is executed during every cycle of the local search.
The second stage contains other operators and they are executed only after
a specific number of cycles of local search don’t find a better solution. The
operators from the first stage are faster compared to those from the second
stage, thus they are given more time as long as they improve the solution.
After the first stage fails to find improvement for a certain number of cycles,
then the algorithm calls the operators from the second stage.

3.8.1 First stage of local search

The first stage contains these operators:

— MoveTrip,

SwapTrips,

RelnsertDeliverStack and RelnsertInstallStack,
— RegionGroupingNN,

LoopSwap,

— Swaplnstallations.

The order of the execution of operators is determined in a probabilistic
manner, i.e. in each iteration, a new order of operators is calculated based on
probabilities that are determined by an algorithm configurator (we will give
more information in the section about experimenting).

MoveTrip - moves a trip from one truck to another within a permitted
time window. It uses the idea of min-conflicts heuristic ([I3]) to generate the
neighborhood in the way that all the trips from a day are treated as variables
that are in conflict for a better allocation in one of the available trucks. This
neighborhood operator is expected to improve the solution by decreasing the
number of trucks or truck days and indirectly changing the configuration of
the installations. It also may generate solutions with equal cost but a different
structure.

Swap Trips - swaps two trips from different trucks. It also uses min-conflicts
heuristic to generate the neighborhood by treating all the possible pairs of trips
as variables and finding the best swapping pair. Swap Trips and MoveTrip are
executed alternately, i.e. the former is executed in current loop and the latter
in the next. These operators are very efficient when it comes to decreasing the
number of vehicles because they treat the problem as a bin packing problem,
where the vehicles and their trips are treated as bins and items respectively.
In order to evaluate the role of these neighborhood operators, we ran our
algorithm with and without operators MoveTrip and SwapTrips, with a set

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

214

Valon Kastrati et al.

of instances comprised of 15 instances from the early set (E01 to E15) and 9
from the late set (LO1 to L09). The algorithm was run for each instance, five
times in each mode for 500 seconds. We measured the relative improvement
of the average costs for each instance. The results are depicted in figure
As the chart shows, when the algorithm uses MoveTrip and SwapTrips, it
generates better solutions for most of the instances. For example, we have an
improvement ratio of over 8% for the problem instance LO09.

The pseudocode of an operator that uses min-conflicts heuristic is given in
the algorithm |2} In this procedure, we have an outer loop that is executed as
long as there are global improvements. Inside the outer loop, we first set the
variable BestLocalCost to infinity. Then we start a loop that performs the
moves for as long as there is an improvement compared to BestLocalCost. At
the end of the inner loop, we check if the resulting solution s is better than
IncumbentSolution. If we have a global improvement we repeat the outer
loop. As it can be noticed, the inner loop will always execute at least two
times, because first, we compare the Costl against co. In this way, the first
move may result in a worse solution, and in the next cycles only improving
moves are accepted. The method SelectAMove selects a move depending on
the operator, while the method EvaluateMove(s, Move) returns the cost of
solution s if Mowve is executed. In the case of MoveTrip and SwapTrips the
method Select AMove selects a trip to move or a pair of trips to be swapped
respectively.

Algorithm 2 Procedure Min-Conflicts

s < CopyO f(IncumbentSolution)
repeat
LocalImprovement < false
BestLocalCost < oo
repeat
Move < Select AMove(s)
Costl < EvaluateMove(s, Move)
if Costl < BestLocalCost then
ExecuteMove(s, Move)
LocalImprovement < true
BestLocalCost < Costl
else
LocalImprovement < false
end if
until Locallmprovement = false
if s.Cost < IncumbentSolution.Cost then
IncumbentSolution < CopyO f(s)
GlobalImprovement < true
else
GlobalImprovement + false
end if
until GlobalImprovement = false

RelnsertDeliverStack and RelnsertInstallStack - use destroy and repair
heuristic and are similar except for the fact that the former starts destroy-

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

215

Solving VRPDIM using ILS

%

10.00
2.00
.00
4.00
200

Qoo

Fig. 1 The ratio between with and without MoveTrip and Swap Trips

repair on deliveries and the latter starts on installations. We implement several
strategies for the destroy part and they are described later in this section. It
is worth noting that when we select a request for removal, we remove both the
delivery and installation from the schedule. Reinsertion is done in a greedy
way for each pair of the delivery and installation, by finding the best positions
in the entire feasible time window. This increases the search space because
we now consider the best insertion for both the delivery and installation. We
have experimented with the order of the insertion, but the procedure was very
slow and it did not improve the results significantly. Insertion of deliveries and
installations is committed in the order they are removed from the schedule.

RegionGroupingNN - performs removal and insertion of requests by select-
ing a list of Nearest Neighbors. After a set of requests are selected, they are
grouped in a new trip that is assigned to a vehicle. This strategy has the poten-
tial to improve the solution because it removes from the schedule the requests
that are assigned to different trips and regroups them in an optimized trip.

The three operators mentioned previously are based on the idea of different
heuristics for destroy and repair, an approach that has been used by [20], [16]
and [18]. This operator implements the min-conflicts heuristic in the same way
as algorithm

LoopSwap - performs a sequential swap of requests (nodes) noted as r; and
their positions p;,i € {1,...,1}, where request 71 is moved from position p; to
p2, o to p3, ..., r; to p1, creating a closed cycle of swapping. This operator
affects only deliveries from a certain day. The idea of this operator comes from
the classical move called Ejection Chain which was proposed by authors in
[I7]. The potential of this move relies on the fact that while an improving

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

216

Valon Kastrati et al.

single swap of two nodes becomes less likely to happen, increasing the number
of swaps in a move increases the possibility to find improvements.

SwaplInstallations - swaps two installation requests. The neighborhood is
generated so that the first request is selected randomly and then the best
swap with all possible installations is executed. In order to extend the selected
neighborhood, we also remove the delivery part of the request. The proce-
dure is executed as long as there are improvements and its main target is the
subproblem regarding the installations and technicians.

3.3.2 Second stage of local search

The second stage of local search is executed after a parameterized (k) gap of
iterations of the first stage without improvement and it uses these operators:

— RelnsertDeliverSerial and RelnsertInstallSerial
— BestSwap WithNNDays and BestSwap WithNNDaysInst

RelnsertDeliverSerial and RelnsertInstallSerial - take an input list of re-
quests (delivery and installation) and then relocate each request, including
the delivery and installation. This operator, in fact, performs a series of relo-
cations, where the evaluation of the move is done only after all the requests
are relocated. The idea behind this is to accept temporarily worse solutions in
order to move to more promising search space regions.

BestSwap WithNNDays and BestSwap WithNNDaysInst - These two opera-
tors search for the best pair of requests to swap, considering the complete set
of requests assigned on a certain day. This procedure is repeated for as long as
it finds improvements. Since this generated neighborhood is relatively large,
we put these operators in the second stage of local search, which is executed
only after the first stage cannot make improvements for a given number of
cycles.

Destroy - Remove Heuristics - As mentioned previously, several operators
use a method that selects a set of requests for removal so that different heuris-
tics for insertion are used afterward. The simplest way is to select a set of
requests from a random day, a random truck, a random trip, or a random
technician, depending on the number of requests. The idea behind this is to
destroy a particular region of the solution. Another approach is to select ran-
domly a request and then appending the request with the nearest location
and with overlapping time windows. In this way, we select a set of requests
that have a higher probability to be arranged in a single trip or assigned to
a day or truck. Another way to select a set of requests is to find the requests
whose partial cost in the total solution cost is highest. This can be done using
a function P(s,r) = E(s) — E’(s,r) that calculates the difference of current
evaluation F(s) of a solution s, and the cost when the request r is removed
from the solution E’(s,r). We refer to this heuristic as RemoveWorst.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

217

Solving VRPDIM using ILS

3.4 Acceptance criteria

In our approach, we accept only better solutions. This logic is implemented
inside the min-conflicts algorithm which is used by the mentioned operators.

3.5 Perturbation

Perturbation is implemented through two moves: PerturbSwapTrip and Per-
turbRelnsertDeliverStack. They are the same operators as Swap Trip and Reln-
sertDeliverStack respectively, but modified to accept solution of a worse qual-
ity. Perturbation is executed with a parameterized (k) gap of iterations, i.e. for
successive k iterations no perturbation takes place. We compensate sparse per-
turbations with the application of several perturbations in a row and selecting
the best current solution as the incumbent solution for the next iteration.

3.6 Parameter tuning

Our algorithm contains a set of operators that are executed in a certain order,
and this order appeared to be important. While performing experiments we
noticed that for different instances, different orders of operators gave different
results. For this reason, we used a method based on roulette wheel to deter-
mine the order of operators for each cycle, namely the operators: Relnsert-
DeliverStack, RelnsertInstallStack, RegionGroupingNN, LoopSwap and Swap-
Installations (respectively O, ...,O5). The roulette wheel system takes five
parameters p;,i € [1,5],> p; = 1 as input and produces an order of oper-
ators. Each parameter p; is the probability that operator O; is selected as
j-th operator for j € [1,5]. For example, if all the parameters have the same
value, p; = 0.2,7 € [1,5], then the operators will have the same probability
to be chosen at each step in the sequence, which means that all the possible
permutations of sequences will have the same probability to be chosen. Or, if
parameter p; = 1,p; = 0,4 € [2,5], then the operator O; will always be the
first one in the sequence, and the four remaining operators will be chosen as
the next in the sequence with the same probability. We used the SMAC tool
([012]) to determine the best configuration of parameters for our algorithm.
The SMAC tool performs intensive experiments using one set of training in-
stances, and one set of testing instances to find the optimal values for each
parameter. We ran SMAC tool with these parameters:

— Total time limit was set to 2 days,

— Maximum runtime for instance: 500 seconds

— Training Instances: 8 instances chosen randomly from "Early’ and 'Hidden’
sets

— Testing Instances: 27 instances chosen randomly from "Early’ and "Hidden’
sets

— The list of parameters to be tuned: p;,i € [1,4], (since p5s =1 — Z?:l Di)

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

218

Valon Kastrati et al.

— The possible values for parameters:
{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55, 0.6, 0.7, 0.8}

The execution of SMAC tool with this setup resulted in parameter settings as
shown in table [I} From the table, we see that the operator O4 (Swaplnstalla-
tions) should be selected as the first parameter in sequence 40% of the time.
Operators O1, 02, O5 have equal probability to be selected, and that the Os
will always be the last operator in sequence.

Table 1 Parameter setting found by SMAC

Parameter Value

p1 0.2
D2 0.2
p3 0
P4 0.4
p5 0.2

4 Computational results

We compared the results of our approach with the results submitted in the
challenge website by all the participating teams. In the all-time-best chal-
lenge took part 13 teams who submitted their solutions for 25 instances. Eight
teams, including our team, were selected for the final phase with the restricted
resources. The organizers of the challenge had made available three sets with
25 instances each:

— Early set: 25 instances for all-time-best mode

— Late set: 25 instances used to train the algorithm for restricted resources
mode

— Hidden set: 25 instances that were used in restricted resources mode. This
set was made available after the finalists for the second stage were chosen
and after the submission of solvers was done.

For both challenges, the participants were allowed to use external state of the
art solvers such as: FICO El, GUROBI E| or CPLEX |E|

4.1 All-time-best challenge mode

At this stage of the challenge, all the participating teams were able to submit
their solutions for each instance from the Early set, and the results were ranked

4 https://community.fico.com/s/academic-programs
5 http://www.gurobi.com/academia/academia-center
6 http://ibm.biz/AI_CPLEX128

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

https://community.fico.com/s/academic-programs
http://www.gurobi.com/academia/academia-center
http://ibm.biz/AI_CPLEX128

Solving VRPDIM using ILS

for each instance. Since at this stage there was no limitation regarding the run
time, the participating teams only submitted their best solution. The challenge
website E] reported the best solutions from all the participating teams for each
instance from the Early set. From the table [2] we can see the best result for
each instance and the results of our approach. The column Ratio expresses
the relative difference of the cost of our approach compared to the best result,
and the Rank column shows the ranking of our algorithm (out of 13 teams)
for each instance. We can see that we reached the second place for the first
instance, the third place for 6 instances, the fourth place for 13 instances, the
fifth place for 4 instances and sixth place for one instance. For 7 instances
the ratio is less than 1 percent, which shows that the results of our solver
are very close to the best results. A more detailed comparison of all-time-best

Table 2 Best solutions submitted by participants for All-Time-Best challenge

Instance Best | Our Approach Ratio | Rank
Early01 3,487,969,810 3,487,996,910 0.0008% 2
Early02 11,149,038,115 11,225,768,410 0.6882% 5
Early03 179,700,885 184,117,395 2.4577% 3
Early04 284,205,965 289,436,220 1.8403% 3
Early05 2,223,814,105 2,479,106,500 | 11.4799% 4
Early06 24,160,989,040 24,732,913,745 2.3671% 3
Early07 45,815,700 45,853,150 0.0817% 3
Early08 109,798,470 110,016,310 0.1984% 3
Early09 18,075,485 19,762,065 9.3308% 4
Early10 18,500,638,020 18,761,510,110 1.4101% 5
Earlyl1 28,549,460 31,781,875 | 11.3222% 4
Early12 23,933,097,895 24,447,956,620 2.1512% 5
Early13 582,708,670 584,976,550 0.3892% 4
Early14 94,780,375 99,699,795 5.1903% 4
Early15 1,772,831,110 1,784,630,020 0.6655% 5
Early16 3,287,392,325 3,446,044,045 4.8261% 4
Earlyl7 3,018,108,020 3,035,277,510 0.5689% 6
Early18 5,129,752,375 5,405,790,030 5.3811% 4
Early19 9,290,203 9,457,608 1.8020% 3
Early20 4,764,640 5,296,100 | 11.1543% 4
Early21 1,292,914,150 1,360,412,960 5.2207% 4
Early22 203,485,635 217,759,862 7.0149% 4
Early23 55,207,660 58,177,435 5.3793% 4
Early24 17,337,730 17,960,220 3.5904% 4
Early25 66,769,325 71,241,680 6.6982% 4

219

VeRoLog Solver Challenge top solvers results is given in table [3] For each
solver/team an each instance the relative gap to to the best is presented. The
first column represents the instance, the second shows the number of requests,
and the rest of columns show the results of five best teams including our team
(last column: AAVK). It can be seen that difference of results for most of the
instances among solvers is very narrow.

7 https://verolog2019.ortec.com/

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

https://verolog2019.ortec.com/

220

Valon Kastrati et al.

Table 3 Comparison of All-time-best VeRoLog Solver Challenge top solvers results

Inst. n | MJG Uos TCS COKA | AAVK
EO01 150 | 0.0000 | 0.0008 0.0009 0.0096 0.0008
E02 300 | 0.0000 | 0.1086 0.4372 0.5217 0.6882
E03 450 | 0.0000 | 0.3570 4.2765 3.7151 2.4577
E04 600 | 0.0000 | 0.7426 2.4175 3.8037 1.8403
EO05 750 | 0.0000 | 1.0570 7.2300 20.2542 | 11.4799
E06 900 | 0.0000 | 0.6966 3.6447 6.9432 2.3671
E07 150 | 0.0000 | 0.0159 0.5373 2.4136 0.0817
E08 300 | 0.0000 | 0.0083 0.3387 9.8424 0.1984
E09 450 | 0.0000 | 0.7916 5.1190 22.8997 9.3308
E10 600 | 0.0000 | 0.0822 1.7774 0.2722 1.4101
E11 750 | 0.0000 | 1.7460 3.0933 76.2355 | 11.3222
E12 900 | 0.0000 | 0.8513 2.3508 1.4309 2.1512
E13 150 | 0.0000 | 0.0410 0.7328 0.3682 0.3892
E14 300 | 0.0000 | 0.4298 4.6534 8.7505 5.1903
E15 450 | 0.0000 | 0.0704 0.1740 2.9431 0.6655
E16 600 | 0.0000 | 0.8654 2.5741 37.7519 4.8261
E17 750 | 0.0000 | 0.1128 0.3475 0.2998 0.5689
E18 900 | 0.0000 | 1.0690 3.3212 9.5738 5.3811
E19 150 | 0.0000 | 0.2566 1.9767 42.7723 1.8020
E20 300 | 0.7238 | 0.0000 | 11.0304 | 111.3894 | 11.1543
E21 450 | 0.0000 | 0.7025 3.3241 51.1948 5.2207
E22 600 | 0.0000 | 0.6228 3.1012 23.3063 7.0149
E23 750 | 0.0000 | 1.9225 2.1815 17.7000 5.3793
E24 900 | 0.0000 | 2.2040 2.3669 45.7606 3.5904
E25 150 | 0.0000 | 0.4744 4.9185 7.0527 6.6982

4.2 Restricted resources challenge

The late set of 25 instances was used for the second stage of the challenge.
Participants had to submit the algorithm and the solution for each instance
from this set. Then the organizers ran the solver for these instances in their
servers and selected a limited number of best performing teams. Solvers from
this short list then were used with the hidden set of instances to further de-
termine the complete ranking of submitted solvers. From 9 runs, the best two
and worst two solutions were dropped, and the remaining 5 were used to de-
termine the average and standard deviation. Table[4 shows our results for each
instance, including the best cost, average cost, and standard deviation.

For each team, the organizers calculated the rank per instance, and then
the final ranking was determined as average of all ranks. The table 5] shows the
results of the winning team, and the relative results from fourth, fifth and our
solver (teams: orlab, TCS and AAVK). From this table we can see that our
solver provided better results than fourth place for seven problem instances.

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

Solving VRPDIM using ILS

Table 4 The results of our approach for the hidden set in the restricted resources challenge

Instance Best Average StDev
HO1 68,049,230 68,497,477 502,829
HO02 1,470,177,245 1,654,579,976 | 164,820,353
HO03 1,388,162,220 1,394,947,955 5,454,085
HO04 6,053,945 6,122,060 42,006
HO05 4,687,014,190 4,946,153,397 | 207,877,012
H06 33,537,475 33,642,695 62,003
HO7 128,584,875 138,686,310 6,575,414
HO08 743,077,790 750,319,371 4,230,922
HO09 2,925,297,281 3,087,641,280 | 120,454,552
H10 47,813,445 49,105,137 848,275
HI11 5,050,880,606 5,176,963,402 98,658,731
H12 3,082,704,895 3,095,575,436 8,427,309
H13 5,341,187,251 5,368,906,565 16,223,058
H14 1,394,884,865 1,403,511,603 5,094,711
H15 166,559,140 167,109,473 410,510
H16 61,626,085 63,624,954 1,218,645
H17 27,870,689,964 | 27,950,302,615 51,793,696
H18 54,778,115 55,313,427 290,138
H19 4,425,251,625 4,450,177,592 20,478,291
H20 208,729,450 231,061,473 14,678,813
H21 38,119,685 38,845,432 477,952
H22 7,473,115 7,575,488 96,316
H23 22,946,775,355 | 23,021,877,311 48,690,845
H24 32,129,246,375 | 32,216,184,262 74,165,994
H25 817,352,060 988,807,257 | 118,314,588

221

Table 5 Comparison of results in restricted resources challenge

Inst. UoSsS orlab TCS | AAVK
HO1 67,347,510 1.757 1.963 1.708
HO02 884,328,838 | 46.944 9.308 87.100
HO03 1,356,206,683 1.245 5.431 2.857
HO04 5,470,823 17.165 9.190 11.904
HO05 2,438,943,861 | 46.875 | 18.939 | 102.799
HO06 33,122,942 0.565 2.041 1.569
HO7 102,289,614 | 29.817 7.889 35.582
HO8 729,462,821 1.043 7.975 2.859
HO09 1,713,909,634 | 50.785 | 18.646 80.152
H10 31,615,173 | 36.361 | 14.808 55.321

H11 4,143,464,703 | 47.843 | 10.383 24.943
H12 2,988,919,325 1.398 6.547 3.568
H13 5,239,090,235 1.164 3.510 2.478

H14 1,380,531,069 0.843 4.536 1.665
H15 163,861,015 1.025 3.069 1.982
H16 53,561,471 | 33.553 | 10.688 18.789
H17 27,322,051,463 0.744 3.341 2.299
H18 53,040,623 7.058 3.951 4.285
H19 4,379,503,211 0.402 2.368 1.614
H20 127,117,759 | 31.932 | 11.306 81.770
H21 33,217,241 | 42.250 8.522 16.944
H22 6,750,354 | 16.978 3.996 12.224

H23 22,368,503,381 1.233 5.690 2.921
H24 31,373,781,566 0.577 4.962 2.685
H25 549,854,756 | 23.468 | 13.028 79.831

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

222

Valon Kastrati et al.

5 Conclusions and Future Work

In this work, we presented a new approach for Vehicle Routing and Schedul-
ing with Deliveries and Installation of Machines. Our algorithm includes min-
conflicts heuristic, nearest neighbors, and destroy and repair heuristics in the
iterated local search framework. Several neighborhood operators are evaluated
and additionally, we introduced two new neighborhood operators. The exper-
iments showed that the use of new neighborhoods improved the results for
most instances. Overall our approach has been able to provide good solutions
for a complex problem that includes scheduling and routing.

We participated in the VeRoLog Solver Challenge 2019 where organiz-
ers introduced three sets of problem instances for two different experimental
settings: all-time-best and restricted resources challenge. Thirteen teams par-
ticipated in all-time-best challenge, and eight of them were qualified for the
restricted resources challenge, including our team. The approach we proposed
provided promising results for instances that were used in the competition. In
the future, we plan to extend our metaheuristic approach and investigate its
hybridization with exact methods.

References

1. Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem: State
of the art classification and review. Computers & Industrial Engineering 99, 300-313
(2016)

2. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of
delivery points. Operations research 12(4), 568-581 (1964)

3. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational research society 52(8),
928-936 (2001)

4. De Franceschi, R., Fischetti, M., Toth, P.: A new ilp-based refinement heuristic for
vehicle routing problems. Mathematical Programming 105(2-3), 471-499 (2006)

5. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Net-
works 11(2), 109-124 (1981)

6. Geiger, M.J.: A contribution to the verolog solver challenge 2019 (2019). URL https:
//verolog2019.sciencesconf.org/244024. Workshop of the EURO Working Group on
Vehicle Routing and Logistics optimization (VeRoLog)

7. Graf, B.: An adaptive large variable neighborhood search for a combined vehicle routing
and scheduling problem (2019). URL https://verolog2019.sciencesconf.org/249822.
Workshop of the EURO Working Group on Vehicle Routing and Logistics optimization
(VeRoLog)

8. Gromicho, J., van’t Hof, P., Vigo, D.: The verolog solver challenge 2019. Journal on
Vehicle Routing Algorithms 2(1-4), 109-111 (2019)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: International conference on learning and intelligent
optimization, pp. 507-523. Springer (2011)

10. Jagtenberg, C., Raith, A., Sundvick, M., Shen, K., Maclaren, O., Mason, A.: Matheuris-
tics for the 2019 verolog solver challenge: Mips and bits (2019). URL https://
verolog2019.sciencesconf.org/250600. Workshop of the EURO Working Group on
Vehicle Routing and Logistics optimization (VeRoLog)

11. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman
problem. Operations research 21(2), 498-516 (1973)

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

https://verolog2019.sciencesconf.org/244024
https://verolog2019.sciencesconf.org/244024
https://verolog2019.sciencesconf.org/249822
https://verolog2019.sciencesconf.org/250600
https://verolog2019.sciencesconf.org/250600

223

Solving VRPDIM using ILS

12. Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A., Hutter, F.:
Smac v3: Algorithm configuration in python. 2017 (2017)

13. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artif. Intell. 58(1-3),
161-205 (1992). DOI 10.1016/0004-3702(92)90007-K. URL https://doi.org/10.1016/
0004-3702(92)90007-K

14. Or, I.: Traveling salesman type combinatorial problems and their relation to the logistics
of regional blood banking. (1977)

15. Osman, I.LH.: Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of operations research 41(4), 421-451 (1993)

16. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers &
operations research 34(8), 2403-2435 (2007)

17. Rego, C., Roucairol, C.: A parallel tabu search algorithm using ejection chains for the
vehicle routing problem. In: Meta-Heuristics, pp. 661-675. Springer (1996)

18. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation science 40(4), 455-472 (2006)

19. Salari, M., Toth, P., Tramontani, A.: An ilp improvement procedure for the open vehicle
routing problem. Computers & Operations Research 37(12), 2106-2120 (2010)

20. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: International conference on principles and practice of constraint
programming, pp. 417-431. Springer (1998)

21. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research 35(2), 254-265 (1987)

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume |

https://doi.org/10.1016/0004-3702(92)90007-K
https://doi.org/10.1016/0004-3702(92)90007-K

	Introduction
	Problem Description
	General Description of our Approach
	Computational results
	Conclusions and Future Work

