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Abstract The Multi-Mode Resource-Constrained Multiple Projects Schedul-
ing Problem (MMRCMPSP) is an important real-life problem. The aim is to
schedule activities belonging to multiple project instances respecting differ-
ent shared resources, precedence, and time constraints. To solve this problem
we propose a new hybrid approach combining constraint programming (CP)
and a meta-heuristic based algorithm. To this aim, we propose and evaluate a
CP model that includes all constraints of MMRCMPSP. The hybrid approach
takes advantage of the complementary features of CP and meta-heuristics.
Our method outperforms state-of-the-art methods for this class of problems
by generating new upper bounds for several instances. Moreover, we evaluate
our method on the existing well-studied benchmark instances for multiple-
mode resource constrained single project scheduling problems and provide new
upper bounds for many instances.

Keywords Meta-Heuristics and Constraint Programming · Hybrid approach ·
Iterated Local Search · Project Scheduling · Min Conflicts

1 Introduction

Scheduling problems sum up a class of various combinatorial optimization
problems of high interest for academics and industry. In particular, project
scheduling is an important representative of this type of problems that usually
has to deal with scheduling of activities of project/s under different types of
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constraints (resource constraints, precedence constraints, time horizons, etc.)
and different types of objectives. One of the most studied problems of this class,
Resource Constrained Project Scheduling Problem (RCPSP), have to deal with
scheduling of activities of a project that require a certain amount of resources
and are subject to precedence constraints among them. According to a review
article [1], the RCPSP belongs to the group of NP-hard optimization prob-
lems. In many cases, the objective of this problem is the minimization of the
project makespan. One of the most prominent benchmark libraries for RCPSP
instances, PSPLIB, is provided by Kolisch and Sprecher [2]. Various enhanced
versions of the RCPSP of academic and engineering interest have been intro-
duced over time. A general variant (Multi-Mode Resource-Constrained Multi-
ple Projects Scheduling Problem (MMRCMPSP)) of RCPSP is presented at
the MISTA 2013 challenge.
In this paper, we focus on the MMRCMPSP problem. It extends RCPSP prob-
lem from two perspectives [3]: activities of a project may have more than one
mode of execution (MRCPSP problem) and multiple instances of projects shar-
ing scarce resources need to be scheduled simultaneously (RCMPSP problem).
MMRCMPSP is a closer representation of the real-world scheduling problems.
It consists on simultaneous scheduling of multiple project instances in an op-
timal schedule while their activities can be executed in more than one of
modes and are subject to different types of resources, time, and precedence
constraints. Moreover, the main objective in case of this problem is the min-
imization of the total project delay (TPD) and the total makespan (TMS) of
projects serves as a tie-breaker.
MMRCMPSP as a more generalized form of project scheduling problem at-
tracted the attention of many researchers. In the review article [4] a combina-
tion of Monte-Carlo Tree Search (MCTS) and hyper-heuristics were proposed.
This was the winning approach of MISTA 2013 challenge. Geiger [5] introduced
an iterated variable neighborhood search with four neighborhood structures.
In [6] a multi-neighborhood, parallel local search approach was proposed. An-
other meta-heuristic approach based on iterated local search was introduced
in [7]. [8] implemented a genetic algorithm for a multi-project environment
with projects with assigned due dates and a resource dedication policy. A
stochastic local search procedure with two neighborhoods was implemented
by [9]. In [10] a genetic algorithm for mode assignment and a priority rules
heuristic for job selection in MMRCMPSP was implemented. Other proposed
methods for this problem may be found in [11], [12], [13] and [14]. Regardless
of the contributions of many researchers to MMRCMPSP, optimal solutions
of many existing instances are not known yet. In this paper, we introduce a
new hybrid approach that combines a constraint programming approach with
a meta-heuristic that extends the previous method proposed in [7]. Our ap-
proach outperforms the best existing algorithm [4] (to our best knowledge) for
MMRCMPSP, by providing new upper bounds to many benchmark problems.
Additionally, our approach provides new upper bounds for fifty benchmark
instances (MMLIB library) for the MRCPSP problem [15]. The main contri-
butions of this paper are:
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– We provide a constraint programming model for MMRCMPSP and apply a
state of the art CP solver to solve existing problem instances. Although con-
straint programming has been used previously for related project schedul-
ing problems, to the best of our knowledge this is the first time that CP
is applied for MMRCMPSP, which includes several extensions. Our model
was tested with thirty benchmark instances from MISTA 2013 challenge.
Long runs of algorithm resulted in new upper bounds for six instances.
Execution of algorithm under time restriction conditions (5 minutes run
per instance) gave the best results for three instances compared to other
best solvers.

– The improvement of a local search based algorithm proposed in [7]. The
improved version includes a new neighborhood operator that improved
results of [7] for most benchmark instances. Additionally, it provides new
upper bounds for five multiple-mode resource constrained single project
scheduling problem instances.

– Proposal of a hybrid algorithm that combines the CP model and the im-
proved meta-heuristic approach. The hybrid algorithm improved further
the results and outperformed best state-of-the-art solver ([4]) for MMR-
CMPSP in many instances. We provide new upper bounds for almost half
of the benchmark instances (fourteen new upper bounds and four equal
upper bounds out of thirty) and fifty new upper bounds for multiple-
mode resource constrained single project scheduling problem benchmark
instances.

2 Problem Description

The MMRCMPSP problem [3] is comprised of a set of n projects: P =
{1, 2, .., n} and every project i ∈ P is comprised of activities Ji that are ex-
ecuted in more than one of the modes taking into account different shared
resources, time, and precedence constraints. Also, every project has a release
date ri, i.e. the earliest time when its activities could start. Every activity
j ∈ {1, 2, .., |Ji|} of every project has to be scheduled, i.e. its starting time
sij has to be defined considering all constraints. The first and last activi-
ties of projects are dummy activities with only one execution mode, duration
equal to zero and no resource requirements. There are sets of renewable and
non-renewable resources Li ∈ {1, ..., |Lρi |, |L

ρ
i |+ 1, ..., |Lρi |+ |Lvi |}, where Lρi ∈

{1, ..., |Lρi |} indicates renewable resources and Lvi ∈ {|L
ρ
i |+ 1, ..., |Lρi |+ |Lvi |}

non-renewable resources. All non-renewable resources have fixed capacities for
the whole project duration, for every project. Renewable resources have a fixed
capacity per time unit. There are local renewable resources dedicated to a spe-
cific project only and global renewable resources (Gρ) that are shared among
all the projects. The availability of global renewable resources is limited by cρg,
g ∈ Gρ. There are no global non-renewable resources. Every activity has more
than one available execution mode. An execution mode of an activity defines
time duration required to complete the activity and its specific resource re-
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quirements. Execution modes of activities are defined by Mij ∈ {1, ..., |Mij |}
and dijm (duration of activity j ∈ Ji, i ∈ P in modem ∈Mij). Moreover, rρijml,

rvijml and rρijmg determine the requirements for local renewable, non-renewable
and global renewable resources, respectively, when activity j ∈ Ji, i ∈ P is
processed in mode m ∈ Mij . Feasible projects schedules must always satisfy
following hard constraints:

– For every local non-renewable resource l ∈ Lvi dedicated to every project
i ∈ P , its total consumption cannot exceed its capacity l ≤ cil.

– For every local renewable resource l ∈ Lρi dedicated to every project i ∈ P ,
its total consumption at time unit t cannot exceed its capacity l ≤ cil.

– For every global renewable resource g ∈ Gρ, its total resource consumption
at time unit t cannot exceed its capacity l ≤ cρg.

– Particular activities may require the completion of other activities before
they start. In that case, feasible schedules must fulfill all precedence con-
straints between such activities, i.e. if activity j ∈ Ji, which is executed in
mode m, must precede activity j′ ∈ Ji.

– Release time of every project is respected, i.e. for each activity j ∈ {1, 2, .., |Ji|}
of every project i ∈ P , its start time sij ≥ 0 and sij ≥ ri.

The objective is to find a feasible schedule with minimum total project delays
(TPD) and projects total makespan (TMS). TPD is the primary objective
and TMS is used as a tie-breaker. Project delay of a project i is defined as the
difference between Critical Path Duration (CPD), a theoretical lower bound
on the earliest finish time of the project, and the actual project duration
(makespan):

PDi = MSi − CPDi (1)

MSi - makespan of project i is calculated as difference:

MSi = fi − ri (2)

fi - finish time of project i,
ri - the release date of project i,
Total project delay is calculated as:

TPD =
n∑
i=1

PDi (3)

n - the number of projects.

Total makespan is the duration of the complete multi-project schedule:

TMS = max
i∈P

(fi)−min
i∈P

(ri) (4)

Both soft constraints are combined into a single objective function as follows:

F = a ∗ TPD + TMS (5)

where value a in the MISTA 2013 challenge was a = 100, 000.
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3 The constraint programming model for MMRCMPSP

As stated earlier, MMRCMPSP generalizes other types of scheduling problems
and is closer to real-world problems representations. Different models for dif-
ferent scheduling problems have been presented in the literature. We built our
model using several features of the model for MRCPSP scheduling problems
presented in [16].
Main extensions to our MMRCMPSP model are related to modeling of:

– Constraints related to a set of global renewable resources ( Gρ) that are
shared among all the projects and their availability is limited by cρg, g ∈ Gρ
(equation 18). There are no global non-renewable resources.

– Release dates constraints and dummy activities for every project (equations
7-9).

– Implementation of an objective function that consists on finding a feasible
schedule that fulfills constraints while minimizing the total project delay
(TPD) and the total makespan (TMS). Project delay is defined as the
difference between Critical Path Duration (CPD) and the actual project
duration (makespan). TPD is the primary objective and TMS as the dura-
tion of the whole multi-project schedule is used as a tie-breaker (equation
20).

– Multi-dimensional data structures to model multi-project instances execu-
tion modes, local renewable and non-renewable resources and add global
resources.

We further describe the main components and constraints of the CP model. We
have used the IBM CP Optimizer to implement it. According to the problem
definition, every project i ∈ P = {1, 2, .., n} is comprised of a set of non-
preemptive activities or jobs Ji and has a release date ri, i.e. the earliest time
when the activities of the project i can start.
Activities are modelled as decision variables:

intervalJi ∀i ∈ P (6)

and projects’ release dates constraints and dummy activities:

startOf(si) = ri ∀i ∈ P, si ∈ Pi (7)

startOf(si) ≤ startOf(j) ∀i ∈ P, j ∈ Pi (8)

endOf(j) ≤ startOf(ei) ∀i ∈ P, ei, j ∈ Pi (9)

Every activity j ∈ Ji, of every project i ∈ P , has one or more available execu-
tion modes m ∈Mij . The execution mode of an activity determines duration
dijm required to complete the activity and its specific resource requirements.
Execution modes and processing time in every mode for every activity are
modeled as decision variables in our model as well:

intervalmij optional ∀i ∈ P, j ∈ Ji,mij ∈Mij (10)
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interval dijm optional ∀i ∈ P, j ∈ Ji,m ∈Mij (11)

Since, every activity j ∈ Ji, can be executed in only one of its modes, then:

alternative(j, [mij ]∈Mij) ∀i ∈ P, j ∈ Ji (12)

Resources are expressed as cumul-function expressions:

cumulFunction cil ∀i ∈ P, l ∈ Lρi (13)

cumulFunction cρg ∀g ∈ Gρ (14)

intExprhil ∀i ∈ P, l ∈ Lνi (15)

Feasible schedules of projects must always fulfill following hard constraints:

– For each project i ∈ P and each local non-renewable resource associated
to that l ∈ Lνi , total resource consumption does not exceed its capacity
l ≤ hil. Since non-renewable resources have fixed capacities for the whole
project duration we modeled them in our model as scalar expressions:∑

j∈Ji

∑
mij∈Mij

presenceOf(mij)(rijm
ν
l ) ≤ hil ∀i ∈ P, l ∈ Lνi (16)

In MMRCMPSP model every project has its own list of non-renewable
resources.

– For each project i ∈ P and each local renewable resource associated to that
l ∈ Lρi , total resource consumption does not exceed its capacity l ≤ cil.
As the name implies local renewable resources are dedicated to a specific
project and have a fixed capacity per time unit, meaning their capacity
constraints have a temporal dimension. Therefore, they are modeled as
cumulative functions:∑

j∈Ji

∑
mij∈Mij

pulse(mij , rijm
ρ
l ) ≤ cil ∀i ∈ P, l ∈ L

ρ
i (17)

In MMRCMPSP model every project has its own list of renewable re-
sources.

– For each time unit t and each global renewable resource g ∈ Gρ, total
resource consumption at t does not exceed its capacity l ≤ cg. Global
renewable resources are modeled similarly as local renewable resources as
cumulative function. There is only one global resources list common to all
projects: ∑

i∈P

∑
j∈Ji

∑
mij∈Mij

pulse(mij , rijm
ρ
g) ≤ cg ∀g ∈ Gρ (18)

There is no global non-renewable resources list.
– Feasible schedules must fulfill all precedence constraints between activities:

endBeforeStart(a, j) ∀i ∈ P, a, j ∈ Pi (19)
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According to definition the main objective function of MMRCMPSP problem
consists of minimizing total project delay of projects and the projects total
makespan as tie-breaker. It is defined as:

f = min(max(endOf(j) +
∑
i∈P

(α ∗max(endOf(Pi))))),∀j ∈ Ji (20)

α – is a constant.

4 Description of extended meta-heuristic

Our main aim regarding the hybrid algorithms for MMRCMPSP is to combine
two complementary search strategies. Various classifications and taxonomies
for hybrid approaches can be found in the literature [17], such as combining
meta-heuristics with constraint programming, combining meta-heuristics with
exact methods from mathematical programming, combining meta-heuristics
with other meta-heuristics or machine learning techniques. We opted for com-
bination of an exact approach, a CP model, with a local search based algorithm
that extends the algorithm in [7], which combines min conflicts and tabu search
heuristics embedded in an iterated local search framework.

4.1 Solution representation

In our extended meta-heuristic solutions are represented as pair of vectors:−→
S = {−→π ,

−→
M}, where −→π represents the vector of all activities from all projects

and
−→
M is its corresponding modes vector:

−→π = {1, 2, .., |J1|, |J1|+ 1, .., |J1|+ |J2|+ ..+ |Jn|} (21)

Analogous representations were employed by [4], [6], [5] and [7]. Construc-
tion of a solution alternative is done by sequentially assigning activities into a
schedule as early as possible.
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Algorithm 1 SwapAndModeCh(s) neighborhood operator
repeat

Improved← false
acti ← random.select.from(Ji)
while not IsSuccessor(s, acti+1) do

s′ ← Swap(s, acti, acti+1)
for all modes of acti+1 do

s′′ ← OneModeChange(s′, acti+1)
if (eval(s′′) < eval(s)) then

s← s′′

Improved← true
end if

end for
end while

until not Improved

First, we added a complex neighborhood operator, SwapAndModeCh, com-
prised of two existing simple ones SwapActivity and OneModeChange noted
in [4], [6], [5]. As our CP solver (IBM CP optimizer) also includes a large
neighborhood search, we excluded from the implementation of local search
four-mode-change (MinConFMC ) neighborhood operator due to the fact that
it generates also large neighborhoods. SwapAndModeCh applies swap between
an activity and its successor along the schedule until the precedence constraint
is not violated. After each swap, activity is assigned each of its modes in turn
and if there is an improvement the solution is accepted (algorithm 1).
Figure 1 illustrates the generated neighborhood by this operator assuming that
acti = 3, SuccessorOf(acti) = 5 in a given input solution s. Activity 3 swaps
with its descendants in the schedule all the way up to its successor, activity 5,
with whom it has a precedence constraint.

Fig. 1 SwapAndModeCh(s) neighborhood operator

The implementation of improved meta-heuristic is designed for multi-threaded
execution environment (algorithm 2).
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Algorithm 2 Improved algorithm ILS Min Con(s, Time)

for all
−→
Si do−→

Si ← s
end for−→
Sbest ← ∅,

−→
Sbestlocal ← ∅

NoImprovement← true, LocalImprovement← true
repeat

repeat

for all
−→
Si do

CloneProj(), CloneProjPart(), ComE(), ComF ()
end for
if (BroadcastBestLocal()) then

NoImprovement← false
else

NoImprovement← true
end if

until NoImprovement
Improve← true
while Improve do

for all
−→
Si do

MinConOMC()
end for
if (BroadcastBestLocal()) then

LocalImprovement← true
else

Improve← false
end if

end while
if LocalImprovement then

for all
−→
Si do

PCom(),MinConTMC()
end for

else
for all

−→
Si do

SwapAndModeCh(
−→
Si), INV S(),MinConSJL(),MinConSJR()

end for
BroadcastBestLocal()

end if
if (
−→
Sbestlocal <

−→
Sbest) then

−→
Sbest =

−→
Slocal, NoImprovement← false

else
NoImprovement← true

end if
LocalImprovement← NoImprovement
if (not LocalImprovement) then

LocalImprovement← not LocalImprovement
PerturbationSize← PerturbationSize + 1

else
PerturbationSize← 1

end if
for all

−→
Si do

Perturbate(
−→
Sbestlocal, P erturbationSize), Reset(

−→
Sbestlocal)

end for
until Time
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Other neighborhood operators depicted in algorithm 2, one mode change (Min-
ConOMC), two-mode change (MinConTMC), shift an activity to its last pre-
decessor (MinConSJL), shift an activity to its first successor (MinConSJR),
invert subsequence of activities (INVS), compress project and move to the
end (ComE), compress project and move to the front (ComF), clone a project
(CloneProj), clone a project partially (CloneProjPart) and clone a sequence
from a project (CloneSeq) are implemented similar to the implementation in
[7]. Definition of BroadcastBestLocal() method is depicted in algorithm 3.

Algorithm 3 BroadcastBestLocal()

minLocal← min
i∈{1,..,4}

eval(
−→
Si)

stemp ← ∅
if (eval(

−→
Sbestlocal) > minLocal) then

minLocal = min
i∈{1,..,4}

eval(
−→
Si)

stemp ←
−→
S
arg min

i∈{1,..,4}

−→
Si

for all
−→
Si do−→

Si ← stemp

end for−→
Sbestlocal ← stemp

return true
else

return false
end if

4.2 Acceptance criteria and perturbation

Similar to the implementation in [7], we accept only better solutions and im-
plemented adaptive perturbation strategy in relation to instance size. The
perturbation consists of changing modes of up to 10 % of randomly selected
activities from the schedule.

4.3 Parameter tuning

In this algorithm, two adaptive tabu lists are implemented: one tabu list for
operators that manipulate modes and one for operators that manipulate po-
sitions of activities in the schedule. The dimensions of these tabu lists are
parameterized and experimentally determined as a percentage of the total
number of activities in a given instance. Other parameters we fine tuned are:
size of variable set for MinConOMC and MinConTMC operators and pertur-
bation size threshold. Parameter values are fine tuned using the SMAC tool
([18], [19]) and obtained are depicted in Table 1.
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Table 1 Parameters used for tests

Parameter Value Domain of values
ModeTBLength 30% {10%, 15%, 20%, 25%, 30%, 35%, 40%}
SeqTBLength 20% {10%, 15%, 20%, 25%, 30%, 35%, 40%}
VarSetSize 11 {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
PertSizeThreshold 10% {3%, 5%, 7%, 10%, 13%, 15%, 20%}

5 Hybrid Method

Our hybrid implementation consists of sequential execution of constraint pro-
gramming model and extended meta-heuristic explained in the previous para-
graph. According to [17] it could be classified as high-level relay hybrid (HRH)
approach. The output solution of one method serves as initial solution for the
other. A perturbation of the best incumbent solution is performed if there was
no improvement between every sequential call of algorithms. The perturbation
strategy is based on a mode change of an activity and inversion of a short se-
quence of activities randomly selected from the schedule. It always produces
feasible solutions. The perturbed solution serves as a starting point for the CP
model. We experimented with allotted execution time for every algorithm in
ratio two to one and three to one in favor of CP model within an execution
sequence. Slightly better results were obtained with ratio three to one (algo-
rithm 4).
In our hybrid method data reading technicalities for MMRCMPSP and MR-
CPSP problems are implemented. Proper data structures (interval variable ar-
rays, multi-dimensional cumulative functions arrays, scalar expression arrays,
constraints, etc.) for the proper type of problems are generated and populated.

6 Computational results

We performed experiments on thirty benchmark MMRCMPSP problem in-
stances provided in MISTA 2013 challenge. Algorithms presented in this chal-
lenge were executed in a computer with a 64-bit Intel Core i7 processor (3.4
GHz) CPU of eight cores, 8 GB RAM. Every algorithm was executed ten times
for each instance and five minutes for every run. All of our tests were executed
on a machine with 64-bit Intel Core i5 processor (3.3 GHz) CPU of four cores,
8GB RAM. Algorithms are implemented in the programming language C#
(Visual Studio 2019 development environment). In order to perform experi-
ments in approximately identical conditions, we determined running time in
our machine according to benchmark program (the 64-bit version) of the 2011
International Timetabling Competition. 1 The execution of this program on
our computer lasted 690 seconds, while on the computer used in the com-
petition 645 seconds. Therefore, we set the running time on our computer

1 https://www.utwente.nl/ctit/hstt/itc2011/benchmarking/

198

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Arben Ahmeti, Nysret Musliu

Algorithm 4 Hybrid approach for MMRCMPSP combining a CP model and
an extended meta-heuristic

s← ∅
s′ ← ∅
CP.Add(Projects, Activities,Modes,Resources)
CP.Add(ConstraintsTypes : (7), (8), (9), (16), (17), (18)and(19))
{See equations (7), (8), (9), (16), (17), (18) and (19)}
CP.Add(ObjectiveFunction : equation(20))
CP.SetParameters(T ime ∗ 3, SearchType,RandomSeed)
while not Termination Condition do

CP.Solve()
s← CP.ExtractSolution()
s′′ ← ILS Min Con(s, T ime)
if (eval(s′′) < eval(s′)) then

s′ ← s′′

else
acti ← random.select.from(Ji)
s← RandomOneModeChange(s′, acti)
s← RandomInvertSubSequence(s)

end if
sp← CP.Solution()
sp.Set(s)
CP.SetStartingPoint(sp)

end while

to 321 seconds, accordingly. Additional experiments were accomplished under
different settings with and without time restrictions.

6.1 Benchmark instances

Every set of benchmark instances (A, B and X) is comprised of ten instances.
Sizes of instances vary from smallest one comprised of 2 projects and 20 activi-
ties up to the biggest one with 20 projects and 600 activities. Even though, we
were focused on solving MMRCMPSP problem instances, we tested our algo-
rithms on solving multi-mode resource-constrained project scheduling problem
instances introduced in [15] as well. New upper bounds were obtained for many
instances from each set of problems.

6.2 Evaluation of the hybrid method

Our hybrid approach outperformed the best solver implemented in [4] for MM-
RCMPSP problem when running algorithms under no-restriction conditions.
It generated new upper bounds for the majority of instances of this group,
(Table 2). Solver presented in [4] ran 2500 times for each instance and 5 min-
utes for every run. We executed our solver for 24 hours only once for each
instance. Many of the instances converged much earlier, within a few minutes.
Comparison of results of our hybrid method with those of the solver imple-
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Table 2 Comparison of our hybrid approach’s results (TPD/TMS) with the best solvers
results so far for MMRCMPSP problem

Inst. [4] [5] [6] Our algorithm New upper bounds
A1 1/23 1/23 1/23 1/23 Equal
A2 2/41 2/41 2/41 2/41 Equal
A3 0/50 0/50 0/50 0/50 Equal
A4 65/42 65/42 68/50 65/42 Equal
A5 150/103 153/104 154/104 151/104
A6 133/99 144/94 151/94 132/90 Yes
A7 590/190 601/206 626/194 595/189
A8 272/148 319/162 281/147 257/147 Yes
A9 197/122 225/128 212/127 186/122 Yes
A10 836/303 920/313 983/309 854/307
B1 345/124 349/130 358/131 348/127
B2 431/158 481/171 431/159 404/160 Yes
B3 526/200 604/214 585/196 515/204 Yes
B4 1252/275 1283/287 1435/294 1296/283
B5 807/245 866/252 867/254 813/250
B6 905/225 1067/246 970/224 888/219 Yes
B7 782/225 827/232 876/234 800/233
B8 3048/523 3618/565 3001/520 2871/525 Yes
B9 4062/738 4606/783 4753/741 4093/736
B10 3140/436 3541/473 3123/430 3057/437 Yes
X1 386/137 - 392/142 385/139 Yes
X2 345/158 - 416/167 342/163 Yes
X3 310/187 - 332/177 287/183 Yes
X4 907/201 - 980/209 896/204 Yes
X5 1727/362 - 1904/369 1757/370
X6 690/226 - 821/237 700/232
X7 831/220 - 909/232 854/224
X8 1201/279 - 1389/281 1188/279 Yes
X9 3155/632 - 3945/639 3269/641
X10 1573/373 - 1718/377 1572/374 Yes

mented by [4] are also given in Figure 2, where differences between results for
every benchmark instance of both solvers are visually presented.

We also evaluated our solver on MMRCSPSP instances and experiments re-
sulted with new upper bounds for fifty instances and equal results for many
more compared to results of state-of-the-art solvers (Table 3). In experiments
run under time restriction conditions, i.e. 10 runs per instance and 5 minutes
per each run, our hybrid solver generated best results for nine and equal re-
sults for four benchmark instances (Table 4). Average results and standard
deviations are reported, too. Differences between results of our solver and best
solver [4] under these restrictions are presented graphically in Figure 3. It can
be noticed that for very large instances, e.g. B9 and X9, hyper-heuristic ap-
proach performs better compared to our hybrid method. This is due to the
nature of the CP model that is a constituent part of the hybrid method, it
performs very well for small and medium instances.
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Fig. 2 Comparison of our results (TPD/TMS) with the best solver’s results ([4]), under no
time restriction conditions for MMRCMPSP problem

Fig. 3 Comparison of our results (TPD/TMS) with the best solver’s results ([4]), under
time restriction conditions for MMRCMPSP problem
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Table 3 New upper bounds achieved by the hybrid method for MRCPSP problem

MMLIB Instances
mmlib50 mmlib100 mmlibPlus

Inst. Makespan Inst. Makespan Inst. Makespan
J507 1.mm 43 J1008 5.mm 49 Jall146 1.mm 64
J507 5.mm 40 J10045 3.mm 53 Jall185 3.mm 107
J5043 5.mm 63 J10074 4.mm 75 Jall193 3.mm 75
J5045 4.mm 35 J10076 3.mm 58 Jall254 3.mm 81
J5046 5.mm 38 J10079 1.mm 128 Jall256 3.mm 113
J5047 5.mm 38 J10080 5.mm 83 Jall302 1.mm 47
J5048 2.mm 39 J10081 1.mm 85 Jall344 4.mm 83
J5080 5.mm 69 J10081 2.mm 74 Jall346 2.mm 78

- - J10081 3.mm 70 Jall347 3.mm 57
- - J10082 3.mm 78 Jall363 1.mm 57
- - J10082 4.mm 94 Jall371 1.mm 84
- - J10083 2.mm 79 Jall372 3.mm 72
- - J10083 3.mm 71 Jall374 4.mm 66
- - J10084 3.mm 78 Jall394 2.mm 102
- - J10084 5.mm 73 Jall399 1.mm 237
- - J10092 2.mm 80 Jall401 2.mm 193
- - J10092 5.mm 71 Jall410 5.mm 62
- - J10094 1.mm 54 Jall458 3.mm 79
- - - - Jall509 1.mm 138
- - - - Jall512 1.mm 132
- - - - Jall537 3.mm 133
- - - - Jall537 4.mm 104
- - - - Jall556 2.mm 99
- - - - Jall566 5.mm 124

6.3 Evaluation of the extended meta-heuristic

We have accomplished separate tests with extended meta-heuristic and our CP
model under time restriction conditions. It turned out that the extended meta-
heuristic slightly improved most of the MMRCMPSP results (the best results,
average and standard deviation) in comparison with the implementation in
[7] (Table 6). According to [7] their solver is competitive to the third ranked
solver under time restrictions. Meta-heuristic approach provided better results
in nine and equal in three instances compared to our CP model and none
compared to hybrid method.
Additionally, we tested our extended meta-heuristic with MMRCPSP problem
benchmark instances. Tests resulted in the achievement of new upper bounds
for five instances (Table 5).
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Table 4 Comparison of our results (TPD/TMS) with the best solver’s results ([4]), under
time restriction conditions for MMRCMPSP problem

[4] Hybrid approach
Inst. Best Avg Std Best Avg Std
A1 1/23 - - 1/23 1/23 0
A2 2/41 - - 2/41 2/41 0
A3 0/50 - - 0/50 0/50 0
A4 65/42 - - 65/42 65/44 0/2
A5 153/105 - - 152/104 165/106 8/2
A6 147/96 - - 144/92 160/100 5/3
A7 596/196 - - 615/205 639/201 2/5
A8 302/155 - - 276/150 291/150 11/3
A9 223/119 - - 200/121 215/128 11/3
A10 969/314 - - 921/313 982/325 41/7
B1 349/127 352/128 - 364/126 379/128 11/2
B2 434/160 454/168 - 419/162 461/164 21/2
B3 545/210 554/211 - 566/212 601/212 19/1
B4 1274/289 1305/284 - 1368/291 1464/291 65/6
B5 820/254 833/254 - 887/262 923/262 18/4
B6 912/227 953/232 - 925/233 992/236 38/4
B7 792/228 801/232 - 859/239 921/244 49/5
B8 3176/533 3314/548 - 3145/561 3511/568 179/14
B9 4192/746 4264/755 - 5262/884 5740/922 320/30
B10 3249/456 3338/460 - 3415/473 3583/469 137/6
X1 392/142 405/142 - 408/142 432/145 21/2
X2 349/163 357/164 - 375/167 402/170 20/4
X3 324/192 330/193 - 318/187 346/190 19/4
X4 955/213 971/212 - 939/210 1033/209 53/2
X5 1768/374 1785/373 - 1878/386 1956/388 43/5
X6 719/232 738/241 - 768/240 840/249 72/8
X7 861/237 868/236 - 890/235 925/239 24/5
X8 1233/283 1257/289 - 1310/287 1452/300 92/8
X9 3268/643 3303/647 - 3840/718 4134/750 163/15
X10 1600/381 1614/382 - 1727/403 1777/403 36/5

Table 5 New upper bounds achieved by meta-heuristic for MMRCPSP problem

Project total makespan new upper bounds
Instance Our algorithm Different authors
Jall127 3.mm 142 143
Jall128 5.mm 94 95
Jall184 1.mm 177 179
Jall263 4.mm 146 147
Jall289 5.mm 196 197

6.4 Evaluation of CP Model

We also performed tests with our CP model under time restriction condi-
tions. According to [16] the search in a CP model can be directed through
configuration of several parameters, e.g. search type, random seed, time limit,
etc. Results of the CP model depicted in Table 6 for MMRCMPSP instances
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are performed with Search Type = Restart, Random Seed = 1292619981 and
Time Limit = 300 s. In restart search mode the algorithm restarts and ex-
ecutes depth first search after a parameterized number of failures. Another
search type we have experimented with is automatic search that employs large
neighborhood search and failure directed search [16]. The former one tries to
converge quickly to a good quality solution and the latter one tries to prove
that no better solution exists than the existing one when the search space is
too small or LNS cannot improve further the solution. CP model uses random
seed parameter for tie-breaking situations only. In Table 6 it can be seen that
the CP model provided slightly better results for three instances compared to
hybrid method and three compared to [4].
The hybrid approach seems to be far more successful than executing the con-
stituent algorithms separately. In the case of very large instances, under short
time restriction conditions, e.g. MISTA challenge conditions, meta-heuristic
approaches appear to be slightly better. Under no time restriction conditions,
the hybrid approach outperforms all solvers.

7 Conclusions and future work

In this paper we investigated three approaches for MMRCMPSP: a CP model,
an extended meta-heuristic and a hybrid approach combining the first two
solvers. We performed separate experiments with all solvers on existing MM-
RCMPSP problem benchmark instances and compared to the state-of-the-art
solver for this problem. It turned out that the meta-heuristic approach pro-
vided better results in nine instances compared to our CP model and none
compared to the hybrid method. CP model provided better results for three
instances compared to the hybrid method and three compared to one of the
best solvers ([4]) for restricted time conditions. Regarding the hybrid approach,
we performed extensive tests in various experimental settings. It outperformed
best existing solver for MMRCMPSP in several instances and achieved new
upper bounds for fourteen out of thirty instances under no time restrictions
conditions. Under time restriction, the model generated best results for nine
and equal results for four benchmark instances. For some very large instances,
the best existing solver ([4]) provided better results. Additionally, we tested
our approach with multiple-mode resource constrained single project schedul-
ing problems well-known instances and experiments resulted with new upper
bounds for fifty instances.
Our main objective was to evaluate a hybrid approach that combines two
complementary search strategies. In this study, we introduce a successful com-
bination of an exact model with a meta-heuristic approach and a certain per-
turbation mechanism. We consider that it is of high interest to investigate
further hybrid approaches that combine different search strategies in order to
create a robust and efficient method. Especially, the role of meta-heuristics
in a hybrid method should be further studied. In our case, we noticed that
for very large instances (B9 and X9), under short time restrictions, hyper-
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Table 6 Comparison of extended meta-heuristics results (TPD/TMS) with the best solvers
results for MMRCMPSP problem under time restriction conditions

Ins.
Extended

meta
heuristic

[7] CP Model hybrid method [4] [5] [6]

A1 1/23 1/23 1/23 1/23 1/23 - -
A2 2/41 2/41 2/41 2/41 2/41 - -
A3 0/50 0/50 0/50 0/50 0/50 - -
A4 65/42 65/45 65/45 65/42 65/42 - -
A5 162/107 163/108 173/110 152/104 153/105 - -
A6 156/94 152/96 162/104 144/92 147/96 - -
A7 644/203 652/208 655/197 615/205 596/196 - -
A8 337/166 335/163 279/148 276/150 302/155 - -
A9 245/139 253/137 212/124 200/121 223/119 - -
A10 969/338 980/331 1017/317 921/313 969/314 - -
B1 355/129 361/129 375/130 364/126 349/127 353/125 363/132
B2 498/177 502/180 438/167 419/162 434/160 490/176 434/160
B3 639/230 637/224 586/206 566/212 545/210 598/215 660/207
B4 1386/302 1415/290 1493/286 1368/291 1274/289 1274/289 1548/295
B5 955/275 927/268 922/267 887/262 820/254 866/254 919/254
B6 1139/261 1146/253 936/227 925/233 912/227 1044/242 1128/232
B7 890/251 864/249 1003/252 859/239 792/228 834/234 908/246
B8 3687/628 3836/626 3113/544 3145/561 3176/533 3585/568 3276/529
B9 5858/948 5757/926 5253/833 5262/884 4192/746 4674/796 5373/769
B10 3636/456 3654/514 3295/455 3415/473 3249/456 3518/469 3325/447
X1 435/148 427/150 443/144 408/142 398/142 394/142 392/142
X2 419/175 408/174 405/167 375/167 349/163 368/165 418/165
X3 382/202 407/206 346/194 318/187 324/192 372/195 326/188
X4 1035/221 1081/221 996/208 939/210 955/213 970/215 986/207
X5 2083/393 2089/428 1940/376 1878/386 1768/374 1938386 2043/375
X6 967/281 953/284 799/243 768/240 719/232 844/253 880/240
X7 951/245 968/248 902/233 890/235 861/237 879231 944/234
X8 1584/329 1515/324 1366/288 1310/287 1233/283 1380/296 1478/289
X9 4374/790 4167/776 4320/760 3840/718 3268/643 3645/688 4169/662
X10 1938/437 1934/427 1739/396 1727/403 1600/381 1669/402 1851/385

heuristic approach still performed better than our hybrid approach. Since the
exact model relies on large neighborhood search and performs very well on
small and medium instances than it is up to meta-heuristics to perform ef-
ficient search within very short time conditions in order to provide excellent
results even in the case of very large instances. Furthermore, improving the
complementary search nature of algorithms that comprise a potential hybrid
method would be of valuable interest.
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