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Abstract A popular technique to construct time-constrained timetables is
the so-called first-break-then-schedule approach which first determines for each
team the time slots on which it plays home or away, after which the opponent
of each time slot is determined. Whereas in time-constrained timetables the
number of time-slots is just enough to play all games, time-relaxed timetables
utilize more time slots than there are games per team. This offers time-relaxed
timetables additional flexibility to take into account venue and player avail-
ability constraints. Despite their flexibility, time-relaxed timetables have the
drawback that the rest period between teams’ consecutive games can vary con-
siderably, the difference in rest time between opponents may become unequal,
and the difference in the number of games played at any point in the season
can become large. In this paper, we explore how to generalize techniques based
on first-break-then-schedule to generate time-relaxed timetables that are less
prone to these drawbacks.

Keywords Time-relaxed sports timetabling - Availability constraints -
Pattern decomposition - First-break-then-schedule - First-off-day-then-
schedule - Game-off-day pattern set feasibility

1 Introduction
Every sports competition needs a timetable, also called schedule, which defines

who will play whom. We assume that each game has two opponents, and
that a game is played in the venue of the home team (the other team plays
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away). This paper studies the construction of a timetable for a so-called time-
relaxed double round-robin tournament (for an overview on sports timetabling,
see Van Bulck et al. (2020)). In a double round-robin tournament (2RR),
each teams meets every other team once at home, and once away. A closely
related variant of the 2RR is the single round-robin tournament (1RR) where
each team meets every team exactly once. In contrast to time-constrained
timetables, time-relaxed timetables utilize more time slots than minimally
needed to schedule all the games. This allows time-relaxed timetables to take
into account venue availability constraints that state when a team can play
home, and team unavailability constraints that state when a team cannot play
at all.

Their flexibility notwithstanding, time-relaxed timetables face three fair-
ness issues that do not occur in time-constrained timetabling. First, the dif-
ference in the number of games played per team after each time slot causes
tournament rankings to become inaccurate. The games-played difference in-
dex of a timetable is ‘the minimum integer GPDI such that at any point in
the schedule, the difference between the number of games played by any two
teams is at most GPDI (Suksompong, 2016)’. Second, the rest time between
teams’ consecutive games can vary substantially, which can result in congested
periods or long periods without any game. Since several researchers found a
relation between fixture congestion and higher injury rates (e.g. Bengtsson
et al. (2013), Dupont et al. (2010)), a popular constraint is to limit the maxi-
mal allowed sequence of games and off days. Third, the difference in rest time
between two opponents may give an advantage to the most rested team. The
rest difference index equals ‘the minimum integer RDI such that for any game
in the timetable, if one team has not played in i; consecutive games since its
last game and the other team has not played in i consecutive games since its
last game, then |i; — i2| < RDI (Suksompong, 2016)’.

Observing that the difference in rest time is only relevant if the least rested
team has not fully recovered from its previous game, this paper proposes to
minimize the sum of truncated rest differences while at the same time con-
trolling for absolute rest time and difference in games played. The truncated
rest time of a team equals its absolute rest time r if » < 7 and equals 7 oth-
erwise. For a more profound empirical motivation of this truncation, we refer
to Scoppa (2015). Without truncation (i.e., 7 = 00), the objective proposed
in this paper is known in the literature as the total rest difference objective
(see Cavdaroglu and Atan (2020)) and as the rest mismatch objective if in
addition the magnitude of the difference is ignored (see Atan and Cavdaroglu
(2018)).

Due to the large number and diversity of constraints and objectives that
typically need to be considered, the construction of sports timetables is chal-
lenging. This difficulty has led to a wide variety of sports timetabling ap-
proaches. Many of these methods have in common that they decompose the
problem into different subproblems, but differ in the order the subproblems are
solved and the methods chosen for each subproblem (e.g., see Trick (2001)).
One particular decomposition method is first-break-then-schedule which first
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fixes for each time slot which teams play home and which play away, after
which it determines the opponents in each time slot (see Section 3). First-
break-then-schedule has been used to successfully schedule a wide variety
of time-constrained competitions, including the Atlantic Coast Conference
(Nemhauser and Trick, 1998), the Danish football league (Rasmussen, 2008),
and the Belgian football league (Goossens and Spieksma, 2009). Despite its
popularity, first-break-then-schedule has not been used so far to schedule
time-relaxed competitions. This paper investigates whether first-break-then-
schedule can be generalized so as to deal with the above described fairness
issues in time-relaxed timetables.

2 Problem description and integer programming formulation

In the time-relaxed availability constrained double round-robin tournament
described below, the input consists of a set of arbitrarily many time slots S,
a set of teams T with |T| = n, for each team i € T a player availability set
A; C€ S and venue availability set H; C A;, and four integers GPDI, p, o, and
7. A feasible timetable for this problem assigns each game (i, j) of the double
round-robin tournament, with home team i € 7' and away team j € T'\ {i},
to a time slot s € S such that each team plays at most once per time slot and:

(C1) the player availability A; is respected for all teams (i.e., no game (i, )
or (j,1) is planned on a time slot s ¢ A;),

(C2) the venue availability H; is respected for the home teams (i.e., no game
(4,7) is planned on a time slot s ¢ H;),

(C3) the games played difference index is at most GpPDI,

(C4) each team plays at most two games per p consecutive time slots, and

(C5) each team has at most o consecutive off days.

In addition, the objective is to minimize the sum of truncated rest differences,
thereby assuming that teams are fully recovered from their previous game after
7 time slots and that they are fully rested at the start of the season.

Availability constraints (C1) and (C2) have applications in a multitude of
time-relaxed tournaments. For example, non-professional teams typically share
their venues with other teams and their players need to be able to combine
their sport with work and family (e.g., Schonberger et al. (2004), Van Bulck
et al. (2019)). A timetable with a low maximal difference in games played
(C3) is desirable since this results in more accurate tournament rankings and
may reduce the opportunities for match fixing. In a 2RR, the games-played
difference index may be as high as 2(n — 2): one team has played twice against
every other team except for one team that did not play any game yet. Con-
straints (C4) and (C5) respectively limit the maximal and minimal number
of games in a series of consecutive time slots so as to avoid fixture congestion
and long periods without any game. Since teams might blame the timetable
for losing the game if they have less rest than their opponent, the objective is
to minimize the sum of truncated rest differences.
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Without the objective function and Constraints (C3) to (C5) (i.e. GPDI =
2(n—2), p=2,and 0 = |S|—2(n—1)), the problem is known in the literature
as ‘RAC-2RR’. From a theoretical point of view, Van Bulck and Goossens
(2020a) show that RAC-2RR is N'P-complete.

Equations (1)-(17) present an integer programming (IP) formulation for
the problem just described. Our main decision variable is x; ; s, which is 1 if
team i € T plays a home game against team j € T \ {i} in time slot s € S,
and 0 otherwise. Variable ¢; ; represents the number of games played by team
1 up to and including time slot s € S, and variable y; 5, is 1 if team 7 plays a
game in time slot s, followed by its next game in time slot ¢, for each s,t € S
such that s <t < 74 s, and 0 otherwise. Finally, variable d; ; contains the
truncated rest difference of game (4, 7).

minimize Z di,; (1)
i,jET ]
subject to
> omis=1 Vi,jeT:i#j (2)
SEH;NA;
Z (Z‘i’j’s-i-xj’iﬁs)gl Vie T,Vse S (3)
JET\ {4}
Gia= D (@ij1+wz) VieT (4)
JET\ {4}
Gis=qis 1+ D, @ijs+Tjis) vieT,s € S\ {1} (5
JET\{i}
Qi,s — qj,s < GPDI Vi,jeT:i#jVseS (6)
s+p—1
S0 @igp i) <2 VieT,Ws€S:s+p—1<|S| (7)
JET\{i} p=s
s+o
Z Z(l‘i,j,p"‘ib‘j,i,p)?l VieT,VseS:s+0<|S| (8)
JET\{i} p=s
Z (fczas + Tjis T Tigt + T
JET\ {4}
t—1
_ Z (4,5, — %’,z‘,k)) —1<yist VieT,s,teS:s<t<7t+s (9)
k=s+1
Yi,st < Z (i 5,5 +Tji,s) VieT,s,t€S:s<t<T+s (10)
JET\{i}
Yist < D (@it +Thi) VieT,s,teS:s<t<T+s (11)
JET\{i}

[t —u|(yi,t,s + Yju,s +Tigs —2) <dij; Vi,jeT:i#js,t,ueS:s—7<t,u<s (12)
(r—(s—t— 1))(%3',5 + Yits — 1

Z Z(xi,k-,u*‘xkgi,u)) <diyj Vi, jeT:i#jVs,teS:s—7<t<s (13)

ueS: keT:
s—T<u<s k#i
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(r—(s—t— 1))(%‘,;’,5 + yie,s — 1—

Z Z(Ij,k,u‘f‘xk,j,u)) <dij Vi, jeT:i#jVs,te€S:s—7<t<s (14)

s _1:%22 S kk%g;
i js =0 Vi,j €T :i#j,s¢ HinA; (15)
xi4,s €{0,1},di j =0 Vi,j e T:i#j,s€ HiNA; (16)
0<y;s,e <1 VieT,s,teS:s<t<T+s (17)

The objective function (1) minimizes the sum of truncated rest differences.
The first set of constraints ensures that each team plays the required number of
home games against every other team, while respecting the player and venue
availability constraints (C1) and (C2). The next set of constraints enforces
that a team plays at most one game per time slot. Constraints (4) and (5)
recursively model the number of games a team played up to and including time
slot s € S, and constraints (6) limit the maximal difference in games played
(C3). The next two sets of constraints respectively model (C4) and (C5).
Constraints (9) to (11) regulate the value of the y; ;, variables by considering
the number of time slots between two consecutive games of the same team.
Constraints (12) to (14) respectively model the difference in rest time when
neither of the teams is fully rested, 7 is fully rested but j is not, and j is
fully rested but ¢ is not. Constraints (15) reduce the number of variables in
the system; when implementing this formulation, these variables need not be
created. Constraints (16) are the binary constraints on the z-variables and the
non-negativity constraints for the d variables. Note that the integrality of ¢; s
follows from (4), (5), and (16), and that the integrality of d, ; and y; s, follows
from the objective function and constraints (9), (10), (11), (16), and (17).

3 Pattern-based decomposition methods

A time-relaxed sports timetable can be seen as a combination of a game-off-
day pattern set, a home-away pattern set, and an opponent schedule. The
game-off-day pattern (GOP) of team i is a function g; : S — {G,0O} such
that g;(s) = G if i plays a game and g;(s) = O if ¢ has an off day (also called
bye) on time slot s (see also Bao (2009)). The home-away pattern (HAP) of
team ¢ is a function h; : S — {H,A,O} such that h;(s) = H if i plays a
home game, h;(s) = A if i plays an away game, and h;(s) = O if i has an
off day on time slot s. An assignment of one GOP to each team is known
as a GOP set, and an assignment of one HAP to each team as an HAP set.
The opponent schedule determines which opponent each team faces for each
of the time slots. Note that the GOPs are fully defined once the HAP set or
the assignment of opponents is known. Furthermore, we observe that every
two patterns in an HAP set must be different, since otherwise two teams can
never play against each other, while this need not be the case in a GOP set.
Clearly, the assignment of opponents must be compatible with the GOP and
HAP set before they can merge into a timetable: for each pair of opponents, the
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corresponding home-away patterns need to give one team the home advantage,
and designate an away game for the other team. Moreover, if a team does not
play against any opponent, it must have an off day in its game-off day pattern.
We call a GOP and HAP set feasible if there exists a compatible timetable
(see also Van Bulck and Goossens (2020b)).

Perhaps the most popular decomposition method in sports timetabling is
the so-called first-break-then-schedule approach that breaks down timetabling
by first enumerating all possible HAPs, then constructing an HAP set and
checking whether it is feasible, and finally determining the opponent schedule
(see Nemhauser and Trick (1998)). Despite the popularity of first-break-then-
schedule, there are two issues that make it less straightforward to construct
time-relaxed timetables using this approach: the combinatorial explosion of
possible HAPs, and the feasibility of HAP sets.

Since in a double round-robin each team plays (n — 1) home games and
(n — 1) away games, the total number of HAPs is given by (n‘f‘l) (lslz(fl_l)).
For 8 teams there are therefore 3.432 time-constrained HAPs, while there
are 923.780 HAPs with one off day and 181.416.306.202.560 HAPs when the
number of time slots is twice more than minimally needed. Hence, where the
total number of time-constrained patterns is already substantial, the total
number of time-relaxed HAPs quickly becomes intractable.

The efficiency of the first-break-then-schedule method heavily depends on
its ability to avoid infeasible HAP sets early on (e.g., Miyashiro et al. (2003)).
While it is conjectured that feasibility of a 1RR time-constrained HAP set can
be verified in polynomial time (see Briskorn (2008)), it is known that verifying
feasibility of a 1IRR time-relaxed HAP set is NP-complete (see Van Bulck and
Goossens (2020b)).

Motivated by the following three observations, an attractive alternative
to the first-break-then-schedule method seems to construct the game-off-day
patterns first.

Observation 1 Once the GOP of a team is known, it is known whether its
compatible timetables respect Constraints (C1).

Observation 2 Once the GOP of a team is known, it is known whether its
compatible timetables respect Constraints (C4) and (C5).

Observation 3 Once the GOP set is known, it is known whether its compat-
ible timetables respect Constraint (C3).

We refer to the method of first determining the GOP set and then the
timetable as the first-off-day-then-schedule method. When constructing time-
relaxed timetables, first-off-day-then-schedule seems to have several advan-
tages over first-break-then-schedule.

First, since each team plays 2(n — 1) games in a double round-robin tour-
nament, there are ‘only’ (2(115_‘1)) GOPs. Unfortunately, this is still a consid-
erably large number making it impractical to enumerate all GOPs when there
are many more time slots than games per team. However, the construction
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Fig. 1 General structure of the first-off-day-then-schedule algorithm. The generation of
GOP sets is discussed in Section 4.1, the feasibility of GOP sets in Section 4.2, and the
assignment of games in Section 4.3.
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of a GOP set may be simple enough so that there is no need to explicitly
enumerate all patterns first.

Second, GOP sets provide more flexibility to schedule games later on since
they do not impose restrictions on the home advantage of games. Nevertheless,
determining whether a given GOP set is feasible remains an N P-complete
problem, unless there is at most one off day per team (see Van Bulck and
Goossens (2020b)).

While the conceptual idea of first-off-day-then-schedule was to some ex-
tent already outlined by Bao (2009), Bao does not provide any computational
experiments with regard to the performance of the first-off-day-then-schedule
method. Moreover, Bao does not provide any information on how to backtrack
when one of the subproblems turns out to be infeasible.

4 Implementing first-off-day-then-schedule

In order to implement a first-off-day-then-schedule approach for the problem
outlined in Section 2, we implement a GOP set generating decomposition
method (see Figure 1). Our approach decomposes the problem into the follow-
ing three components: generate a GOP set (Section 4.1), check feasibility of
the GOP set (Section 4.2), and find a timetable compatible with the GOP set
(Section 4.3). If one of the subproblems turns out to be infeasible, we imple-
ment backtracking. If the master problem is infeasible, then the last solution
found is optimal, or in case no solution was found the problem instance is
infeasible.

4.1 Generating GOP sets

In order to generate GOP sets with constraint programming (CP), we formu-
late the GOP set generation model (18)-(27). Our main decision variable is
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gi,s which is 1 if team ¢ € T" has a ‘G’ on time slot s € S, and 0 otherwise. The
global constraint sequence(nbMin, nbM ax, width, vars, values, card) takes six
arguments: values and card are arrays of integers and must have the same in-
dex set I, vars is an array of decision variables, and the remaining arguments
are integers. For each i € I the constraint requires that card[i] elements of
vars take value valueli], and that any subsequence of size width must contain
at least nbMin and at most nbMax values from wvalues (see CP Optimizer

(2014)).
sequence(0,2, p, (gi,1,-- -5 91,|5)): (1), (2n — 2))) vieT (18)
sequence (0, 0,0 + 1,(gi,1,- -+, i 51), (0), (|S| — 2n +2))) vieT (19)
Zgi,s2n—l Vi e T (20)
s€H;
> (gis=1Agje=1)>1 Vi,jeT:i#j (21)
s€EH;NA;
> (gis=1Agja=1)>2 Vi,jeT:i<j (22)
s€(H;NAj )
U(H;NA;)
S S
|Zgi’p—zgjﬁp|<GPDI Vi, j €T :i<j,¥s€S (23)
p=1 p=1
(Zgi,s mod 2) =0 Vs e S (24)
€T
Z Gi,s = Z Ji,s Vs e S (25)
1€T:seH, i€T:scA;\H;
gi,s =0 V’iET,SES\Ai (26)
gi,s € {0,1} VieT,se S (27)

Constraints (18) model that each GOP contains 2(n — 1) ‘G’s, and that
no GOP contains more than 2 games in any sequence of p time slots (C4).
Constraints (19) model that each GOP contains |S| — 2(n — 1) off days, and
that no GOP contains more than o consecutive off days (C5). Since each team
has to play (n — 1) home games, the next set of constraints requires that each
GOP contains (n—1) ‘G’s during time slots on which the venue of the team is
available. Constraints (21) enforce that each game (7, j) can be scheduled, and
Constraints (22) enforce that game (7, j) and (j,4) can be scheduled simulta-
neously (at least when ignoring all other games). Constraints (23) limit the
maximal difference in games played (C3). The next set of constraints enforces
that the sum of ‘G’s is even on each time slot, a necessary condition since
each game involves two teams. Its simplicity notwithstanding, this necessary
condition is sufficient for the feasibility of a 1IRR GOP set if each team has
at most one off day (see Van Bulck and Goossens (2020b)). Since each game
involves one home team and one away team, Constraints (25) enforce that the
total number of teams that can play home and have a ‘G’ on time slot s € S
must be larger than or equal to the number of teams that have a ‘G’ and
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can only play away on s. Finally, Constraints (26) enforce that a team has an
off day when its players are unavailable, and Constraints (27) are the binary
constraints.

In order to increase the probability that there exists a compatible timetable
for the generated GOP set, we may replace the right-hand side of Constraints
(21) by 1+ € where € is a positive integer parameter which is reduced by one if
no feasible solution for formulation (18)-(27) is found. Note that Constraints
(22) become redundant if € > 1.

4.2 Feasibility checks

A GOP set is feasible if all games can be assigned to time slots on which the
opposing teams have a ‘G’ in their pattern and the venue of the home team
is available. In case a GOP set turns out to be infeasible, we add a constraint
that prevents from finding the infeasible GOP set again. We thereby try to
reduce the total number of solutions that need to be enumerated in the master
problem by cutting-off as many infeasible or sub-optimal solutions as possible
(see also Rasmussen and Trick (2007)).

4.2.1 Game possibilities

Denote with ¢g (T, s) the number of ‘G’s in the GOPs of a subset of teams
T CT,|T'| = m, on time slot s € S. The number of games between teams in
T’ on s is at most L#J Hence, Condition 1 is a necessary condition that
requires to check O(2™) constraints.

Condition 1 (Bao (2009)) > {%T/S)J > m(m —1) for each T' CT.

ses

Instead of explicitly checking Condition 1 for each subset, we formulate an
TP model to find a minimal subset of teams for which Condition 1 is violated,
or which proves that no such subset exists. The formulation of this IP is based
on Rasmussen and Trick (2007), with the main difference that it checks the
feasibility of a GOP set instead of an HAP set and that it requires to be solved
only once instead of once for each cardinality of T”. Parameter UB, gives an
upper bound on the cardinality of the subsets to be checked, and parameters
g; s define the GOP set found by model (18)-(27). The main purpose of pa-
rameter UBgp is to control for the expected computation time to solve the IP
formulation. Variable z., 2 < ¢ < UBgp, determines whether the cardinality of
the subset is ¢ (z. = 1) or not (z. = 0), a; determines whether team 7 is in the
subset (oy; = 1) or not (oy; = 0), and variable §,, s € S, calculates an upper
bound on the total number of games the teams in the subset can play.
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minimize Z a; (28)
€T
UBgp
D= ez (29)
€T c=2
UBgp
S oze=1 (30)
c=2
Bs 2 (D gisai—1)/2 Vse S (31)
€T
> Bs <cle—1) =14 UBap(UBar — 1)(1 — z¢) Vee IN:2< e < UBgr (32)
seS
i, ze € {0,1},8s € N VieT,s €S,ceN:2<c<UBg (33)

The objective function minimizes the total number of teams chosen such
that infeasibility of the GOP set can be traced back to as few patterns as
possible, and Constraints (29)-(30) model the value of z.. Constraints (31)
calculate the upper bound on the total number of games between teams in the
subset on time slot s, and Constraints (32) ensure that Condition 1 is violated.
Finally, Constraints (33) are the binary and integrality constraints.

If a violating set of teams 7" defined by the «;’s is found, the following
constraint is added to the GOP set generation model.

forbiddenAssignment ((gi,1, .- - 9,15 Vi € T'), (gi15- -+, 9115 Vi € T'))  (34)

The global constraint forbiddenAssignment(vars, values) takes two arguments:
an array of decision variables vars and an ordered set values that both have
index set I. The constraint enforces there is at least one ¢ € I such that
vars[i] is not equal to values[i]. Intuitively this constraint forbids any GOP
set in which the teams in T” play according to the GOPs currently assigned.
Clearly, the smaller is |T”|, the stronger is the reduction in the search space.

4.2.2 Isolated slots

Define with S+ C S the subset of time slots on which at least two teams in
T C T, |T'| = m, have a game and all teams not in T’ have an off day, i.e.
Yier 9is = 2 and Y oq gi o = 0 for all s € Spv. We refer to the subset of
time slots St as isolated slots for the subset of teams 7”. Note that it follows
from the definition that S contains all time slots on which at least two teams
have a ‘G’ in their pattern.

Condition 2 For each subset of teams T' C T, the sum of G’s during iso-
lated slots is smaller than twice the total number of mutual games in T', i.e.

Zz‘eT’ ZsEST/ gé,s < 2m(m —1).
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Condition 2 is a necessary condition since teams in 7" can only play against
other teams in 7" during isolated slots, and the total number of games between
teams in 7" is limited by m(m — 1).

Instead of explicitly checking each subset, we formulate an IP model to
find a minimal subset of teams for which Condition 2 is violated, or which
proves that no such subset exists. In this formulation, parameter UBy denotes
the maximal subset to be checked. Furthermore, let v, s € S7, denote the
number of ‘G’s if s is an isolated slot for the subset of teams defined by «.

minimize Z o (35)
€T
UBjs

D= ez (36)
€T c=2

UBjs

D ze=1 (37)
c=2
Vs <@y s VseSrieT:g,,=1 (38)

JeET

Z ¥s = 2¢(c— 1) + 1 — (UBs(UBs — 1) + 1) (1 — z¢) Vee N:2<c<UBg (39)
seSr
ai,ze €{0,1},vs >0 VieT,s € Sp,c € N:2< e < UBg (40)

The objective function minimizes the total number of teams in the subset,
while Constraints (36) and (37) model the z. variables. If all teams that have a
‘G’ on time slot s € St are in the subset, s is an isolated slot and Constraints
(38) counts the total number of ‘G’s. Constraints (39) ensure that Condition 2
is violated, and Constraints (40) are the binary and non-negativity constraints.

If a violating set of teams 7" defined by the «;’s is found, the following
constraint is added to model (18)-(27).

forbiddenAssignment ((g1,s, ..., g7),s Vs € 5'), (9] ¢+ - - » 97,5 Vs € S)) (41)

Constraint (41) forbids any GOP set in which the teams have a ‘G’ according
to the current columns in S’.

4.3 Assign games

Given a GOP set, a third and final step is to construct a compatible timetable.
This section first provides two more feasibility checks based on the construction
of a compatible timetable, and then shows how to construct a compatible
timetable that minimizes the sum of truncated rest differences.

Consider first the following condition for the feasibility of a GOP set.

Condition 3 For each subset of time slots S’ C S, an assignment of games
to time slots in S’ exists such that for each s € S’ team i € T plays exactly one
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game (i,j) or (j,4) if g; , = 1 and s € H;, evactly one game (i,j) if g; , = 1
and s € A; \ H;, and no game z'fgé’S =0.

By the definition of a feasible GOP set, Condition 3 is a necessary condi-
tion for all S’ C S and a sufficient condition if S’ = S. In essence, Condition 3
checks feasibility for a subset of columns in the GOP set. We use the linear
relaxation of formulation (42)-(45) to check Condition 4 for each S’ with car-
dinality UB,¢c or lower, and add a constraint of type (41) to the GOP set
generation model if a violating subset of time slots S’ is found. The main
motivation for the use of the linear relaxation is the expected decrease in
computation time, while (hopefully) still detecting violations of Condition 3
reasonably well.

Z Tijs <1 Vi,j €T :i#j (42)
seS'NH;

Z (xz}j}s + xjﬁi,s) = gg’s VieT,Vs € S’ (43)
JET\{i}
Tijs =0 VieT,WseS :s¢ HiVgls=0Vgi =0 (44)
xij,s €{0,1} Vi,jeT:i#jVseS (45)

The first set of constraints restricts each game (7,j) to be scheduled at
most once, and the second set of constraints enforces the GOP set for the
given subset of time slots. Finally, Constraints (44) reduce the number of
variables in the system, and Constraints (45) are the binary constraints.

Instead of checking the columns of a GOP set, we may also check feasibility
for a subset of rows in the GOP set (see also Rasmussen and Trick (2007)).

Condition 4 For each subset of teams T' C T, an assignment of the mutual
games between teams in T' to time slots in S exists in which the opposing
teams have a ‘G’ in their pattern and the venue of the home team is available.

By the definition of a feasible GOP set, Condition 4 is a necessary condition
for all 77 C T and a sufficient condition if 77 = T'. We use the linear relaxation
of formulation (46)-(50) to check Condition 4 for each subset of teams with
cardinality UB,qg or lower, and add a constraint of type (34) to the GOP set
generation model if a violating subset of teams 7" is found. Observing that the
rest time of teams is known once the GOP set is known, parameter r; ; gives
the truncated rest time of team ¢ € 7’ in time slot s € S. Parameter obj*,
initially equal to infinity, gives the objective value of the current best found
solution.
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> @igs=1 Vij €T 1i#j (46)

s€H;
ST (@igs + 1) <1 VieT' WseS:gl, =1 (47)

JET/\{i}

Do D Iris —risleis <obj* -1 (48)
i,jET': sES

i#j
Tijs =0 VieT' VseS:s¢ HiVg;,=0Vg; =0 (49)
zij,s € {0,1} Vi,j €T :i#4,Vse S (50)

The first set of constraints enforces that each team in 7" plays exactly
once at home against every other team in 7", and the second set of constraints
enforces that each team in 7" plays at most one game per time slot. Constraint
(48) states that the sum of truncated rest differences must be better than the
current best found solution. Finally, Constraints (49) reduce the number of
variables in the system, and Constraints (50) are the integrality constraints.

In case no subset of time slots or teams is found that respectively vio-
lates Condition 3 or Condition 4, we enable all integrality constraints and we
solve formulation (46)-(50) for 77 = T In addition, we minimize the following
objective.

minimize Z Z |Ti,s — Tj,s|$i,j,s (51)
i,jeT’: s€S
1#]

If a solution exists, we have found a strictly better solution and we update
obj* . Moreover, regardless of the feasibility, we add a constraint of type (34)
to the GOP set generation model to prevent that the same solution is found
again.

5 Computational Results

This section experimentally evaluates IP formulation (1)-(17) and the first-off-
day-then-schedule approach respectively proposed in Section 2 and Section 4.

Our benchmark of problem instances consists of 9 artificial double round-
robin problem instances. A problem instance in this set is of type (n, o0, h,a)
if it contains n teams and 2(n — 1) 4 o time slots (i.e., each team has o off
days), and for each team i € T it holds that |H;| = h and |S \ 4;| = a (see
also Van Bulck and Goossens (2020a)). We consider n in the set {8, 12,16}, o
in {(n—1),2(n —1),3(n — 1)}, set h = 0/2 and a = o/4, and assume that a
team is fully rested after five time slots (i.e. 7 = 5). Furthermore, we require
that the games-played difference index is not larger than 2 (i.e. GPDI = 2),
and that a team has at most six consecutive off days (i.e. ¢ = 6). Finally, if
the total number of time slots is at least twice the minimal number needed we
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Algorithms
Teams n o h a P FOTS
8 21 3 1 8 16
28 7 3 8 29
35 10 5 38 42
12 33 5 2 71 45
44 11 5 133 98
55 16 8 205 143
16 45 7 3 185 76
60 15 7 / 155
75 22 11 320 267

Table 1 Results for the artificial problem instances. The first four columns respectively
refer to the number of teams (n), the number of off days per team (o), the average venue
availability (h), and the average player unavailability (a). Algorithm ‘IP’ refers to solving
integer programming formulation (1)-(17), and algorithm ‘FOTS’ refers to the first-ofl-day-
then-schedule approach outlined in Section 4. Finally, ¢/’ means that no solution was found
within the given computation time.

require that no team plays more than 2 games within 3 consecutive time slots
(i.e. p=3) and set p = 2 otherwise.

In order to define the parameters of the first-off-day-then-schedule algo-
rithm, we require that each game can be scheduled during at least four time
slots (i.e. € = 3), check feasibility of Condition 1 and Condition 2 for up to 6
teams (i.e. UBgp = 6 and UBs = 6), and check feasibility of Condition 3 and
Condition 4 for up to 4 time slots and 4 teams (i.e. UB ¢ = 4 and UB,gr = 4).

All IP formulations are solved with ILOG CPLEX version 12.10, and the CP
formulation is solved with ILOG CPLEX CcP OPTIMIZER 12.10. The IP formu-
lation (1)-(17) was granted 3600 seconds of computation time, whereas the
first-off-day-then-schedule approach was granted only 600 seconds of compu-
tation time. All models were run on a CentOS 7.4 GNU/Linux based system
with an Intel E5-2680 processor, running at 2.5 GHz and provided with 16 GB
of RAM and 8 cores.

Table 1 presents preliminary results for the best found solution by each
algorithm. The first four columns provide the total number of teams (n), the
number of off days per team (o), the average team availability (h), and the av-
erage player unavailability (a). The next column gives the best found solution
within the given computation time using IP formulation (1)-(17); none of the
instances was solved to optimality and the best lower bound found was equal
to 0 for all problem instances. The final column shows the best found solution
by our first-break-then-schedule algorithm. Despite being given 6 times less
computation time, the first-off-day-then-schedule finds solutions that are only
slightly worse when there are 8 teams in the competition, and finds even better
solutions for all problem instances that have more than 8 teams.
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6 Conclusion

Decomposition methods are common in sports timetabling and break down
the timetabling process into different subproblems. Perhaps the most popular
decomposition method is first-break-then-schedule where the first subproblem
is to determine the home-away pattern (HAP) set which defines when teams
must play at home or play away. Observing that existing decomposition meth-
ods focus exclusively on time-constrained timetables where the number of time
slots is the minimally needed, this paper investigates how to generalize first-
break-then-schedule so as to construct time-relaxed timetables where there
are more time slots than games per team. In particular, this paper proposes a
first-off-day-then-schedule method that first determines the game-off-day pat-
tern (GOP) set defining when teams play (home or away) or have an off day,
after which it constructs a compatible timetable.

The main advantage of our method is that the construction of GOP sets
turns out to be simple enough so that there is no need to explicitly enumerate
all patterns first. This avoids a combinatorial explosion by only implicitly
enumerating all patterns, and allows to check feasibility of GOP sets both on
the level of rows (representing patterns of teams) and columns (representing
the teams that play on a particular time slot). Nevertheless, our approach still
generates many infeasible GOP sets and would therefore profit from further
research on the level of GOP set feasibility.

We use our approach to generate a number of time-relaxed double round-
robin timetables where availability constraints and fairness issues play a promi-
nent role. Indeed, while the structure of a round-robin tournament already
adds a substantial level of fairness to any timetable designed for it, there are
many other fairness issues that need to be considered. In this paper, we mini-
mize the sum of rest differences while controlling for the rest period between
teams’ consecutive games and the maximal difference in games played.
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