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Abstract The paper describes a framework that was developed to solve the
Uncapacitated Examination Timetabling Problem. It also presents a way of
reducing problem sizes by removing students and examinations that ultimately
have no impact. Moreover, it presents some loose lower bounds that are com-
puted for reference problems. The framework allows the collaboration of multi-
ple metaheuristic algorithms. A common problem and solution representation
is created. Multiple evaluators are available and a mechanism to select variable
neighborhoods is implemented. A number of simple and complex neighbor-
hoods is created. The application of the framework creates competitive results
compared to the best ones available in the literature for the Toronto-b dataset.

Keywords uncapacitated examination timetabling · metaheuristics ·
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1 Introduction

The examination timetabling problem in general involves assigning examina-
tions to a limited number of periods and rooms while respecting a set of hard
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constraints and at the same time trying to minimize the violation of soft con-
straints. The Uncapacitated Examination Timetabling Problem (UETP) does
not consider room capacity requirements. The only hard constraint is that it
is not allowed for a student to sit on two examinations at the same period. On
the other hand, the only soft constraint is that of spreading examinations as
evenly as possible from the student’s perspective. A formal description of the
problem as an Integer Programming problem follows: In this problem setting,
C is the set of courses, P is the set of periods and S is the set of students.
Each course c has a number of enrollments which is captured at Ec. In sync,
each student s has a set of courses Cs that he is enrolled to. The set CNF
contains triplets of the form c1, c2, co which represent the situation in which
course c1 and course c2 have co in common students.

In order to define for each course the period that it will be scheduled
the decision variables mcp are used for each c ∈ C and p ∈ 1..P which
are binary variables assuming value 1 if the course c is scheduled to period
p or 0 otherwise. Moreover, the binary variables y1t,p are defined for each
t ∈ CNF and p ∈ 1..|P − 1| assuming value 1 when courses t.c1 and t.c2 are
scheduled in consecutive periods and 0 otherwise. Likewise, binary variables
y2t,p, y3t,p, y4t,p, y5t,p are defined and assume value 1 when courses t.c1 and
t.c2 are scheduled to periods with distance between 2 and 5 periods respec-
tively.

The objective function is presented in Equation 1

minimize
∑

t∈CNF

t.co
(
16

∑
p∈1...|P−1|

y1t,p

+8
∑

p∈1...|P−2|
y2t,p

+4
∑

p∈1...|P−3|
y3t,p

+2
∑

p∈1...|P−4|
y4t,p

+
∑

p∈1...|P−5|
y5t,p

)
(1)

The first constraint states that each course should be scheduled at exactly
one period and is captured in equation 2.∑

p∈P
mc,p = 1 ∀c ∈ C (2)

The second constraint shown in equation 3 prohibits every possible pair of
courses having common students to be scheduled at the same period.

mt.c1,p + mt.c2,p ≤ 1 ∀p ∈ P ,∀t ∈ CNF (3)

The third set of constraints equations 4 to 8 defines variables y1t to y5t.

y1t,p ≥ mt.c1,p + mt.c2,p+1 − 1
y1t.p ≥ mt.c2,p + mt.c1,p+1 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 1 (4)
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y2t,p ≥ mt.c1,p + mt.c2,p+2 − 1
y2t,p ≥ mt.c2,p + mt.c1,p+2 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 2 (5)

y3t,p ≥ mt.c1,p + mt.c2,p+3 − 1
y3t,p ≥ mt.c2,p + mt.c1,p+3 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 3 (6)

y4t,p ≥ mt.c1,p + mt.c2,p+4 − 1
y4t,p ≥ mt.c2,p + mt.c1,p+4 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 4 (7)

y5t,p ≥ mt.c1,p + mt.c2,p+5 − 1
y5t,p ≥ mt.c2,p + mt.c1,p+5 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 5 (8)

When courses c1 and c2 have distance 1 either mt.c1,p and mt.c2,p+1 or
mt.c2,p and mt.c2,p+1 assume value 1. If this is the case variable y1t will be 1.
If at least one of mt.c1,p or mt.c2,p+1 are 0 the value of y1t could be 0 or 1 but
since it is included in the objective which is minimized it will take the value
0.

This paper describes a framework that was developed to solve the UETP.
The most studied dataset was introduced by Carter [14]. Characteristics of the
used problem instances are presented in Table 1. The specific dataset is heavily
studied, but it is still possible to generate improved solutions compared to the
ones published in literature. The specific dataset has the property that while it
has very low learning curve and relative simple structure it is still challenging.

Table 1 Dataset Problem characteristics (Toronto-b [22])

Problem Exams Students Admissions Density Slots

CAR91 682 16925 56877 0.13 35
CAR92 543 18419 55522 0.14 32
EAR83 190 1125 8109 0.27 24
HEC92 81 2823 10632 0.42 18
KFU93 461 5349 25113 0.06 20
LSE91 381 2726 10918 0.06 18
PUR93 2419 30029 120681 0.03 42
RYE92 486 11483 45051 0.07 23
STA83 139 611 5751 0.14 13
TRE92 261 4360 14901 0.18 23
UTA92 622 21266 58979 0.13 35
UTE92 184 2749 11793 0.08 10
YOR83 181 941 6034 0.29 21

The paper is organized as follows. Section 2 presents related work, sec-
tion 3 presents some analysis on the dataset instances, section 4 presents a
high level framework design and describes the metaheuristic algorithms and
the neighborhoods supported by the framework, section 5 presents generated
results and finally section 6 presents conclusions and future work.
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2 Related Work

Several approaches have been proposed for solving the UETP. The datasets
introduced by [14], collectively known as Toronto datasets, have been typically
used as a testbed for demonstrating the effectiveness of new approaches. So,
a great number of published results exist over those datasets, showing that
approximation methods manage to produce better results, when compared to
exact methods. This might occur due to the large size of the problem instances
and the symmetries among several different schedules that can be produced.
Both these factors prohibit Integer Programming solvers, Constraint Program-
ming solvers and SAT solvers to solve the full problem behind each problem
instance.

A non-exhaustive list of approaches that have given good results follows.
Algorithms based on local search were proposed in [13]. Several hybridizations
of metaheuristics with sequential heuristics were used in [24]. The flex-deluge
algorithm and the late acceptance strategy for solving UETP where proposed
in [8] and [9] respectively. A hybrid variable neighborhood search was used
in [12]. In [15] the problem was approached using hyperheuristics. In [4] the
problem was solved using a hybrid bee colony optimization method. Another,
recent hybrid approach that combines a cellular memetic algorithm with the
threshold acceptance metaheuristic is described in [20].

It should be noted that the survey paper in [22] presents many details about
the examination timetabling problem in general and in particular about the
UETP. A review paper focusing on UETP recently appeared in [2].

3 Some thoughts on the problem and a few loose lower bounds

The simplicity of describing the UETP problem is at odds with the hard-
ness of optimally solving it. This situation strikes resemblance with the iconic
combinatorial optimization problem, Traveling Salesman Problem (TSP) [7].
For TSP, large problem instances have proven optimal solutions, while several
solvers exist capable of obtaining optimal solutions for TSP instances of mod-
erate to large sizes. In particular, the freely available Concorde TSP solver [5]
has the record of obtaining optimal solutions for all TSPLIB [23] instances.
It is impressive that Concorde solver can optimally solve the largest TSPLIB
instance, counting 85,900 cities, while back in 1962, a problem with only 33
cities was considered very difficult to be solved and a competition was hosted
by Procter & Gamble in order to solve it. Moreover, significant theoretical
work has been gradually done for TSP in order to provide solutions within a
guaranteed distance from the optimal ones or in order to find lower bounds
(e.g. Christofides algorithm, 1-tree Lagrangean relaxation). So, new solutions
can be quantified according to how close they are to the theoretically optimal
ones. For example, the world tour TSP problem with 1,904,711 locations has
been solved with total length of only 0.0474% greater than the length of the
theoretically optimal tour. Unfortunately, UETP has not achieved the level of
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maturity that TSP has reached. There are several approaches that give good
results, but this is mostly justified by comparing them with results obtained
for the same problem instances by other researchers. The popularity of TSP,
the longest time that TSP has been at the center of interest for the scientific
community, its adaptation to numerous practical combinatorial optimization
problems (e.g. transportation problems, printed circuits, logistics and others)
might be among the reasons why research on TSP is much more mature than
in UETP.

By simple analyzing the data of the Toronto datasets a few remarks can be
made. Firstly, if there are students that participate in only one examination,
then their presence is irrelevant to the solution of the problem. We call these
students “noise students”, since they have no contribution to the cost of the
final schedule. Secondly, if there are courses that have only “noise students”
then these courses can also be safely removed from the problem, since they
can be scheduled at any period without affecting the cost of the schedule. We
call these courses “noise courses”. It turns out “noise” students and courses
exist for the Toronto datasets. Relevant results are displayed in Table 2 and
suggest that new equivalent versions of the datasets might be constructed by
omitting the “noise” students and courses. The rightmost column of the Table
displays the actual identification numbers of the “noise” courses that are used
at the corresponding datasets.

Table 2 Carter datasets “Noise”

Problem #“Noise” Students #“Noise” Courses Set of “Noise” Courses

CAR91 3409 4 {0033, 0349, 0440, 0657}
CAR92 3969 1 {0519}
EAR83 1 0 Ø
HEC92 321 0 Ø
KFU93 276 17 {0006, 0016, 0022, 0050, 0095,

0122, 0178, 0204, 0205, 0216,
0285, 0329, 0330, 0355, 0369,
0381, 0443}

LSE91 99 2 {0168, 0256}
PUR93 2627 6 {0153, 0552, 0976, 0983, 1454,

1520}
RYE92 2025 1 {0304}
STA83 0 0 Ø
TRE92 667 1 {0186}
UTA92 6180 0 Ø
UTE92 78 0 Ø
YOR83 1 0 Ø
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3.1 Loose lower bounds

Bellow, an idea for calculating some loose lower bounds for the UECP prob-
lem instances is described. Each student has a set of courses he is enrolled to.
These courses should be scheduled to different periods and each assignment
gives an associated cost based on the proximity among the exams. The possible
permutations of scheduling E exams over P periods are P !

(P−E)! . For each per-

mutation the associated cost is easy to be computed. Since the total number
of permutations might be prohibitively large in order to enumerate all permu-
tations and compute its cost, one can notice that the number of examinations
that can be scheduled with zero cost in P periods are L = bP−16 c+1. So, when
the number of examinations a student is enrolled into is no more than L then
the theoretical best cost contribution that can be achieved for this student is
zero. Else, a simple optimization problem can be solved that finds the mini-
mum cost of positioning the E exams of a single student in P periods. A lower
bound to the problem can be identified when the examinations of each student
are scheduled to the exams into the period permutation with the minimum
cost. Such an arrangement might not be possible since it does not consider the
fact that examinations are common between students and each examination
should be scheduled to the same period for all students. Nevertheless, it pro-
vides a lower bound for the problem instances. These bounds, alongside with
the maximum number of courses that a student is enrolled to are presented in
Table 3.

Table 3 Carter dataset lower bounds

Problem Periods Courses per Student (max) Lower Bound

CAR91 35 9 0.01
CAR92 32 7 0.01
EAR83 24 10 17.85
HEC92 18 7 3.49
KFU93 20 8 5.63
LSE91 18 8 2.76
PUR93 42 9 N/A
RYE92 23 10 3.79
STA83 13 11 105.92
TRE92 23 6 0.59
UTA92 35 7 N/A
UTE92 10 6 19.25
YOR83 21 14 18.50

For two of the problem instances, STA83 and UTE92 the lower bounds
are relatively close to the best values obtained in the literature. For two other
problem instances, PUR93 and UTA92 no lower bound can be found in this
way. Following the procedure that was described above the computed value
becomes zero. This occurs because there are enough timeslots that allow even
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for students that have enrolled to the maximum number of courses to have
their examinations spread with no mandatory penalty.

4 The multi metaheuristic VNS framework

4.1 The multi heuristic strategy

The proposed framework which is an extension of Variable Neighborhood
Search (VNS) [21] uses a number of basic metaheuristic algorithms that are
orchestrated using a promising solution that has already been found from
some other algorithm and each one tries to improve it and pass the result to
the next one. Each metaheuristic algorithm uses a number of neighborhoods,
called moves, to select the next candidate solution. Simple moves are randomly
selected, while complex moves are triggered when no progress is achieved using
just simple moves. Table presents the names of the used algorithms.

4.2 Supported metaheuristic algorithms

4.2.1 Simulated Annealing

Simulated Annealing (SA) was proposed by Kirkpatrick et al. [18]. It is a
stochastic metaheuristic algorithm, which accepts inferior quality candidate
solutions with probability P = e(I−C)/T , where C and I are the cost of the
incumbent and the candidate solutions respectively and T is a control pa-
rameter called “temperature”. The application of the algorithm to solve the
UETP is heavily studied. In our implementation, we have developed a number
of alternative cooling schemes and reheating mechanisms.

4.2.2 Late Acceptance Hill Climbing

The Late Acceptance Hill-Climbing (LAHC) [11] is a local search metaheuristic
algorithm, which may accept inferior candidate solutions if their cost is better
than the solution accepted k iterations before. The algorithm maintains a cyclic
buffer of the cost of the last k iterations. The performance of the algorithm is
mainly effected by the value of the k parameter. The algorithm implementation
in the framework adapts the value of k depending on the progress of the last
execution of the LAHC algorithm. At the beginning of the search strategy a
relative small value of k is used to promote the algorithm to mainly accept
improving solutions. When no significant progress is achieved, the value of k
is progressively increased.

4.2.3 Flex Deluge

The Flex Deluge (FD) [10] is a local search metaheuristic algorithm that is a
variant of the Great Deluge (GD) algorithm. The GD algorithm may accept
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inferior candidate solutions if their cost is better than an upper bound denoted
by B. The FD algorithm has an additional kf parameter that denotes the
degree of its flexibility. A kf value of 0 turns the algorithm to a Hill Climbing
algorithm while a value of 1 makes the algorithm identical to the Great Deluge
algorithm. The algorithm accepts a new candidate solution with cost Z if
Z < C + kf (B − C) where C is the cost of the current solution.

4.3 Supported neighborhoods

The proposed framework support multiple neighborhoods that the active meta-
heuristic algorithms select in each iteration to generate a candidate solu-
tion. We will call these neighborhoods “moves”. The implemented moves are
grouped in two groups. The first group contains simple moves that perform
small transformations to the incumbent solution. The second group contains
more elaborate changes to the incumbent solution and may perform a rela-
tively large local search before proposing a new candidate solution, making
them more computationally expensive. The moves are presented in Table 4.

Table 4 Search space exploration

Key Simple Moves Key Complex Moves

S1 BestKempeChain C1 PenaltyDecreaserMove
S2 RandomKempeChain C2 RuinAndRecreateMove
S3 MoveWorstExam C3 SaturationImproverMove
S4 ForceSingleExamAtBest C4 CyclicExchangeMove
S5 SingleExamAtBestSlot C5 TimeRelaxerMove
S6 ExchangeExams
S7 Move Single Exam

4.3.1 Random and Best Kempe Chain

The first available neighborhood structures uses the concept of Kempe Chains
(KCs), initially used to solve the “four color problem”. Given the two sets
of exams assigned to two periods, a number of chains consisting of exams
belonging to either one of the periods is constructed. When an exam of a
chain is moved from one period to the other then all other exams of the same
chain are also moved to maintain feasibility. Initially, both moves randomly
selects two slots and generates all possible KCs between these slots. Then the
Random KC move shuffles the generates KCs and sequentially evaluates the
difference in the cost, if the move was applied. If it finds a KC that produce
a better solution than the incumbent one, it stops the process and returns
the selected KC to be applied. If no improving KC is found, a random one is
returned. The Best KC move on the other hand always returns the KC that
generates the best reduction in the solution cost, among the generated KCs.
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4.3.2 Move Worst Exam

The second available neighborhood structure ranks each exam based on the
individual contribution to the overall cost. The top k exams with the worst
contributions are then put in a squeaky wheel random selection scheme and
one of them is selected. The move then tries to find the best legal slot to move
the exam.

4.3.3 (Forced) Single Exam at Best Slot

The third available neighborhood structures randomly select an exam and
then tries to find the best legal slot to move the exam. The forced version tries
all possible slots, even the illegal ones, and calculates the benefit of moving
the exam to the specific slot. Then, if the best slot is illegal as exams with
conflicting students are already assigned to this slot, it moves the exam to the
best slot and then tries to find a new feasible placement for all the conflicting
exams.

4.3.4 Move Single / Exchange Exams

The fourth simple available neighborhood structures randomly selects an exam
and moves it to the first feasible slot it finds. The exchange move randomly
selects a non conflicting exam from the selected slot and moves this exam to
the initial slot of the first exam.

4.3.5 Penalty Decreaser

The first of the complex moves either tries to optimize first very costly exams
or badly placed exams. For each exam it finds the available legal slots that can
be moved. It then calculates for all legal moves the benefit that each move will
have to the incumbent solution. Based on the calculated benefit it select f out
of all exam moves from the most beneficial to the least one. It then generates
up to k × f combinations out of the selected ones and generate application
sets of exam slot pairs that if applied will generate a legal assignment. Finally,
it evaluates the generated sets and select to apply the best one. For our ex-
periments, k had a value of 30 and f a value of 5. The move requires a lot
of computation time, but is usually able to generate a much better solution
compared to the incumbent one.

4.3.6 Ruin & Recreate

The second of the complex moves initially removes a set of exams, the ruin
phase. One of the two available methods is randomly used to select exams.
The first method selects a fixed percentage of the exams in the problem while
the second uses a knapsack inspired method and removes exams that their
individual contribution to the incumbent solution cost is used as the weight.
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In the second phase, the recreate one, the removed exams are placed in slots
sequentially, using a randomly selected method out of the three available .
The first method, randomly select one unscheduled exam and places it to the
best legal available slot, the second method to the first feasible slot it can find
while the last one randomly select one the previous methods for each individual
exam. The recreate phase placements may lead to an infeasible solution, as
no back tracking is performed when placing unscheduled exams to slots. The
move has a very strong effect, if successful, to help algorithms escape from
local minimum.

4.3.7 Saturation Improver

The third of the complex moves initially calculates for all exams the available
legal slots that each exam can be assigned and then sorts the exams from
the most constrained to the least ones. It then tries to find for the most con-
strained ones if reassigning some of the exams that that have common students
to other slots improves the number of the available slots that the currently se-
lected exam can be moved. It is important to note that the reassignments are
only allowed if no significant change in the cost of the incumbent solution is
performed. For our experiments, we allowed up to 1% total reduction in the
quality of the solution. The idea behind the move is to allow exams that due
to the placement of other conflicting exams are unable to move to provide new
possible slots, helping the algorithms escape from specific areas in the solu-
tion space. The move usually generate worse quality but different solutions
compared to the incumbent one.

4.3.8 Cyclic Exchange

The fourth of the complex moves randomly selects a slot. It then performs
the best Kempe Chain exchange with the next slot and this continues until
the last available slot. When we reach the last slot, the exchange is performed
between the last slot and the first slot. The exchange sequence is continued
with the second slot until the initially selected slot is reached. The idea behind
this move is that exams that are placed at the first or the last slots due to
the cost structure have a benefit as their individual contribution to cost is
calculated with only the exams that are on their right for the exams placed
on the first slots and on their left for the exams placed on the last slots. With
this move, we promote exams with high cost to move to the edges of the slot
periods.

4.3.9 Time Relaxer

The last of the complex moves is inspired by the penalty trader move in [13].
We allow up to d slots for an exam to be moved forward, even if this slot is not
available and we calculate the benefit in the cost that this move would have.
All exams that have moves that would be beneficial are added to a candidate
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list and the list is sorted in an ascending way. We then select the exam with the
highest benefit and remove all other exams that are in the candidate list and
have common students with the selected exam. The selected exam is added
to a new list with non conflicting exams. The process continues until no more
exams are available in the candidate list. As the non conflicting list contains
exams that are compatible and can be scheduled on the same slot, the best
slot for all these exams is selected. The idea behind the move is that it clusters
compatible exams that individually may not have a big benefit in the cost but
collectively may provide a better candidate solution.

5 Experimental results

Best results achieved using all the metaheuristic algorithms and all the avail-
able moves in the framework alongside some of the best results published for
the same dataset are presented in Table 5. The results from our framework
are in the column MAVN, while results from other heuristic method are from
a tabu search method implemented by Di Gaspero and Schaerf[16], a graph
coloring method proposed by Pillar and Allende[17], the sequential heuris-
tic construction methods developed by Caramia et al.[13], the Ahuja-Orlin
large neighbourhood search by Abdullah et al.[1], the Iterative Restart Vari-
able Neighbourhood Search by Ayob et al.[6] and the Flex-Deluge algorithm
developed by Burke and Bykov[10].

Table 5 The best results obtained by MAVN and other optimization methods applied to
the Carter datasets

Dataset MAVN
Di Gaspero

&
Schaerf

Allende
et al.

Caramia
et al.

Abdullah
et al.

Ayob
et al.

Burke
&

Bykov

CAR91 4.58 6.2 4.39 6.6 5.21 4.90 4.32
CAR92 3.80 5.2 3.71 6.0 4.36 4.51 3.67
EAR83 32.67 45.7 32.62 29.3 34.84 36.28 32.62
HEC92 10.03 12.4 10.05 9.2 10.28 11.06 10.06
KFU93 12.87 18.0 12.90 13.8 13.46 14.74 12.80
LSE91 10.02 15.5 9.82 9.6 10.24 12.08 9.78
PUR93 4.46 - - 3.7 - 4.66 3.88
RYE93 8.08 - - 6.8 8.74 10.67 7.91
STA83 157.03 160.8 157.03 158.2 159.28 157.32 157.03
TRE92 7.87 10.0 7.71 9.4 8.13 8.92 7.64
UTA92 3.18 4.2 3.04 3.5 3.63 3.58 2.98
UTE92 24.77 29.0 24.77 24.4 24.21 26.36 24.78
YOR83 35.11 41.0 34.70 36.2 36.11 38.97 34.71
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6 Discussion and future work

In this paper, a framework to solve the UETP is presented. Using the frame-
work, it is possible to experiment with the application of different algorithms
and different neighborhoods very easily. In addition, the design of the frame-
work allows the application of different evaluation methods that can use hard-
ware accelerators [19]. Algorithmic parameters and the choice of moves that
are active have a significant impact in the quality of the generated solutions.
An initial experimentation for offline parameter selection can be found in [3].
In the future, we will investigate the use of online machine learning techniques
to improve the sequence of the application of the available algorithms and the
dynamic selection of neighborhoods.
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