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Abstract Developing robust university course timetables is an important
practical concern. Due to a variety of possible disruptions, i.e. changes in the
input data affecting the constraints, quickly calculating an estimate of robust-
ness to be used within a meta-heuristic, such as Simulated Annealing, would
be very useful. In this research, we attempt to develop a set of slack-based
estimators of a solution’s robustness. To this end, we define 11 different slack
measures (period, room and course-based) and use three summary statistics for
each measure as an estimator of robustness. Preliminary experimental analysis
of the performance of these estimators is done on a sample of 192 solutions for
four International Timetabling Competition 2007 instances selected based on
their diverse characteristics. The results suggest that a slack-based estimator
can be used to identify a Pareto “band” rather than an approximate frontier
that strikes a balance between probability of a solution on the true frontier
being in the band and one not on the true frontier not being in the band.
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1 Introduction

In a typical curriculum-based timetabling process at a university, an initial
timetable, Σ0, is prepared based on a set of constraints, which is then an-
nounced to the university staff, giving them some time to submit requirement
changes, due to new constraints or data corrections. The timetable is then re-
optimized taking these new constraints into account, while ensuring that the
changes to Σ0 is kept to a minimum. This second timetable is announced to
the entire university and the students enroll in courses based on this timetable.
Several types of disruptions that may affect this process are discussed in the
literature (McCollum (2007), Müller et al (2005), Kingston (2013), Phillips
et al (2017), Lindahl et al (2019)). As discussed in Phillips et al (2017) many
different types of changes in data (disruptions) are possible before enrollment.
Some new courses could be added, some others could be removed or canceled
(see e.g. Yasari et al (2019)), some new faculty may arrive and some others
may leave. Some disruptions could simply change feasibility of certain periods
for some lectures. Some disruptions may affect either the availability or the
capacity sufficiency of rooms for some lectures.

Problems in which constraints change over time are known as dynamic op-
timization problems, which fall into the category of optimization in uncertain
environments. Meta-heuristics are quite often used for solving these problems
(e.g. see Jin and Branke (2005) for a survey of evolutionary algorithms). Re-
cently, there has been increasing interest in modeling and solving dynamic
combinatorial optimization problems. One such problem closely related to
timetabling is the graph coloring problem. Hardy et al (2018) develop heuris-
tics for the dynamic graph coloring problem where edges are added/removed
over time, randomly. They look into how information about the likelihood of
future edge changes can be used to produce more robust colorings.

We say a timetable is robust if, when disrupted, its feasibility can be re-
stored without significantly lowering its quality in terms of the objective func-
tion while keeping it relatively stable. We formulate the problem of identifying
a robust timetable as a bi-criteria optimization problem where one objective
is the quality of the solution measured as a function of the violated soft con-
straints (i.e., the penalty function), denoted by P , and the second one is a
function that measures the robustness of the timetable, denoted by R.

We assume multiple number and types of disruptions can affect a given
timetable. This makes calculating the robustness of a given solution quite time-
consuming, since it requires optimally repairing that solution for a reasonably
large sample of disruption scenarios. Thus, the main challenge of designing a
meta-heuristic, such as Simulated Annealing (SA) to solve such a problem is
designing an approximate measure of the robustness of a solution that can be
calculated very quickly. In the work reported here, we develop and test some
measures based on the degree and distribution of slack in a given timetable.
The specific timetabling problem we address is the curriculum-based university
course timetabling problem of ITC-2007 (see McCollum et al (2010)).
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1.1 Disruption scenarios

Here we use the disruption scenarios that have been first developed and used
by Akkan et al (2019). By assuming disruptions that affect two types of limited
resources (time and rooms) we believe we introduce disruptions of sufficient
variety and complexity. Specifically, we assume the following four types of
disruptions may occur:

1. IP : The period to which a lecture of an instructor was assigned is no
longer feasible for that instructor. This disruption is specified by a tuple
〈i, p〉 where i is an instructor, and p is the period to which one lecture of
instructor i is assigned in Σ0. If a disruption 〈i, p〉 is generated, unavailabil-
ity constraints for all courses of instructor i at period p are added, unless
such a constraint already exists.

2. CP : This disruption is specified by a tuple 〈c,P1,P2〉 for course c. Given
the set of periods available for course c, denoted by PCc , P1 ⊆ PCc is a set of
consecutive periods on the same day that become infeasible (unavailable)
for course c and at least one of these periods is used by course c in Σ0.
P2 ⊆ P\PCc is a set of consecutive periods that become available for course
c such that |P2| ≤ |P1|.

3. CS: The number of students for a course is increased beyond the capacity
of the room assigned to at least one lecture of that course. Note that this
does not cause infeasibility, as room capacity is a soft constraint in ITC-
2007, but increases the penalty of the initial timetable. This disruption is
specified by a tuple 〈c, s〉, where s is the new number of students for course
c. Even if some lectures of the course are currently assigned to rooms with
enough capacity, all the lectures of this course are included in the set of
room-disrupted lectures.

4. RP : Availability of one room is lost for one or two consecutive periods on
the same day. This disruption is specified by 〈r, p, d〉, where p is the first
period that room r becomes unavailable, and d is the number of periods
that become unavailable.

A set of disruptions of these types is referred to as a disruption scenario.
All disruptions in a given scenario are aggregated in two sets of disrupted
lectures. The set of lectures e, whose assigned periods in Σ0 become infeasible
due to IP and CP disruptions is denoted by EP (period-disrupted lectures).
The set of lectures e, whose assigned rooms in Σ0 become either infeasible
due to RP disruptions or have insufficient capacity due to CS disruptions is
denoted by ER (room-disrupted lectures). Then, the set of disrupted lectures,
ED, equals EP ∪ ER, with size δ.

1.2 The robustness measure

The robustness objective is expressed as minimizing E(R(S, YS)), the expected
value of a disruption measure R(S, YS), where S is a given solution and YS is
the random variable representing the disruptions.
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Let, F(σi) be the set of all solutions that are feasible with respect to
a disruption scenario σi and D(S0, S1) be the Hamming distance between
assigned period arrays for all lectures Te(S0) and Te(S1) of these two solutions.
D(S0, S1) is equal to the sum, over all courses, of the number of lectures that
are assigned to different periods in these two solutions. Then, we define the
following neighborhood set for a given solution S0 and disruption scenario σi
with δpi period and δri room-disrupted lectures:

N (S0, σi) = {S : D(S0, S) ≤ f(δpi , δ
r
i );S ∈ F(σi)} (1)

Thus, if solution S0 is disrupted by scenario σi, then switching to any solution
in N (S0, σi) would restore feasibility by rescheduling at most f(δpi , δ

r
i ) lectures

to a different period, where f : (N,N) → N. Then, we define the robustness
measure for a given solution S0 and a disruption scenario σi as,

R(S0, σi) = min
S∈N (S0,σi)

(
Pave · 1D(S,S0)>δ

p
i

+ (P (S)− P (S0))+
)

(2)

where x+ := max(0, x) and Pave is the average per lecture penalty for a ran-
domly generated sample of solutions (see Gülcü and Akkan (2020)). Pave is an
additional penalty term added so that solutions that only reschedule period-
disrupted lectures to different periods are favored. Thus, in addition to qual-
ity robustness measured by (P (S)− P (S0))

+
, by adding a fixed penalty cost

for rescheduling more lectures than the period-disrupted lectures, R(S0, σi)
incorporates a measure of solution stability. Solution stability is further en-
sured by adding the constraint D(S0, S) ≤ f(δpi , δ

r
i ) in defining N (S0, σi). If

N (S0, σi) = ∅, then R(S0, σi) is set to a large value, denoted by B.
For solution S, an estimate of E(R(S, YS)) is calculated as a sample av-

erage 1
|Y|
∑
y∈Y R(S, y) for a sampled set of disruption scenarios Y, since a

closed-form calculation of E(R(S, YS)) is not possible. Given the robustness
measure, R, and a set of randomly generated sample of disruption scenarios,
σ = {σ1, σ2, . . . , σN}, E(R) is estimated by R(S, σ) = (1/N)

∑N
i=1R(S, σi).

R(S, σ) is taken as the true robustness measure, using a reasonably large N .
This approach bears some resemblance to the Sample Average Approximation
(SAA) method of Kleywegt et al (2002). The algorithm that is used to repair
solution S subject to a given disruption scenario is the Simulated Anneal-
ing algorithm discussed in detail in Akkan et al (2019), in which f(δpi , δ

r
i ) =

2× δpi + 0.25× δri , and B = 1200.

2 Slack-based Estimators

The tested estimators are summary statistics of some measures of slack in a
given timetable. These measures can be classified into three groups. The first
group provides measures of slack for each period. Let, X(p, r) equals 1 if room
r is used at period p by some lecture, 0 otherwise; and Rm(p) equals the
number of rooms used at period p, while the total number of rooms is Rm.
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Then, assuming the rooms are indexed in increasing capacity, define RSA[p],
room-based slack at period p, as

RSA[p] =

{
1

Rm(p)

∑
r

∑
q>r 1([X(p,r)=1,X(p,q)=0), if Rm(p) > 0

(Rm− 1), if Rm(p) = 0
(3)

The summation term in Eqn. 3, ρ(p, r) =
∑
q>r 1([X(p,r)=1,X(p,q)=0) gives

for every room used at a period, the number of available larger capacity rooms
in the same period.

It is quite reasonable to have decreasing marginal benefit in increasing
ρ(p, r), so an alternative slack measure could make use of an exponential utility

function as RSU[p] = 1
Rm(p)

∑
r

∑ρ(p,r)
j>=1 e

−j for a given period p.

Alternatively, we can assume there is utility in having at least one larger
capacity room for a lecture scheduled at a given period, say at (p, r). In that
case, we would have ρ(p, r) > 0. Then, another slack measure can be defined
as RSB[p] = 1

Rm(p)

∑
r 1ρ(p,r)>0 for a given period p.

The second group of estimators make use of slack measured for each room.
For room r, letting, π(r) =

∑
t 1X[t,r]=0 denote the the number of available

periods in the same room, we define PSU[r] =
∑π(r)
j=1 e

−j as a slack measure
for a given room r.

The next measure is a more finely grained version of PSU[r], where the
periods are sub-divided into daily sets. Let the day of a given period p be
denoted by D(p). Then, ξ(d, r) =

∑
p:D(p)=d 1X[p,r]=0 represents the number of

available time-slots on day d at room r, and we define DSU[d, r] =
∑ξ(d,r)
j=1 e−j

as a slack measure for a given room r on day d.
The third group of estimators measure course-specific availability of peri-

ods. We first let,
Y(p) = the set of courses scheduled at period p.
FR(p) = the set of free rooms in period p
FR(p) = the number of free rooms at period p.
K(r) = the capacity of room r
Kmax(p) = maxr∈FR(p){K(r)}
S(c) = the number of students planned for course c
F(c) = the set of feasible periods for course c.
C(c) = the set of conflicting courses for course c

Note that courses in the same curriculum or taught by the same teacher
are referred to as conflicting courses. We then define the following sets,

AP(c) = {p : p ∈ F(c), FR(p) > 0}
AP+(c) = {p : p ∈ AP(c),Kmax(p) > S(c)}
CP(c) = {p : p ∈ AP(c),Y(p) ∩ {C(c) ∪ c} = ∅}
CP+(c) = {p : p ∈ AP+(c),Y(p) ∩ {C(c) ∪ c} = ∅}

Thus, AP(c) gives the set of periods available for course c, CP(c) gives the
set of conflict free periods available for course c and CP+(c) gives the set of
conflict free periods available for course c, having at least one free room with
sufficient capacity.
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Given these sets, we can define the array C[c] that contains the number
of conflict-free available periods for each course, as C[c] = |CP(c))|. Similarly,
the array of the number of conflict-free available periods with free rooms of
sufficient capacity, for each course c, is defined as R[c] = |CP+(c)|.

Rather than simply counting the number of available periods, as a basis
of the next slack measure, we calculate the utility of the conflict-free available
periods using an exponential utility function, that gives decreasing marginal
utility with increasing number of conflict-free available periods. The array of

these utilities is defined as UC[c] =
∑|CP(c)|
j=1 e−j , for each course c. Similarly,

we define a utility function that is based on conflict-free available periods with

available rooms of sufficient capacity as UR[c] =
∑|CP+(c)|
j=1 e−j , for each course

c. Furthermore, one can argue that the value of C[c] depends on the number
of lectures of course c, L(c), so we defined two additional arrays CED[c] and
CER[c], as CED[c] = C[c]− L(c), and CER[c] = C[c]/L(c).

Given these eleven slack measuring arrays (3 defined for each period, 2 for
each room, and 6 for each course), we calculate the average, standard deviation
and the coefficient of variation (standard deviation over average) of each array
as estimators of the robustness of the given timetable. These three summary
statistics for a given slack measure S are denoted as S, SDS , CVS , respectively.

3 Computational results

For the computational experiments we selected four ITC-2007 instances, namely
ITC1, ITC2, ITC5 and ITC12. They are among the most constrained (thus
potentially difficult) instances in terms of conflict intensity, teacher availabil-
ity, and room occupancy (Bonutti et al (2012)). Then, for each instance, a
set of 48 solutions were selected to carry out correlation analysis between the
slack metrics and the robustness measure, R. The purpose of the selection
procedure was to obtain a diverse set of solutions, from among the set of solu-
tions accepted through a Simulated Annealing algorithm designed to minimize
the penalty. A brief discussion of the selection procedure is provided below,
interested readers could find the details in Akkan et al (2020).

3.1 Solutions selected for analysis

The solutions that were found in the SA search process were used to form
a network of solutions, where each solution is represented by a node. Selec-
tion of solutions for the computational experiments was based on two of their
characteristics: the penalty value and the degree of the node. For each ITC
instance four networks were generated, and 12 solutions were selected from
each network. For the instance ITCi, the network Nnc,s

i was generated by
collecting nc thousand solutions accepted by the SA algorithm (we used 50
and 100 thousand). Starting with the solution accepted in the last iteration
of SA, going backwards and skipping every sth accepted solution, a total of
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Table 1 Penalty and degree intervals used to select the sample of solutions from N50,0
2

P : 75 76 77 78 79 80

[13, 32] [13, 32] [13, 32] [33, 52] [33, 52] [53, 72]
[173, 192] [133, 152] [113, 132] [93, 112] [93, 112] [73, 92]

nc thousand solutions are collected into the network (we used s equals 0 and
1). Letting G(N,E) denote a solution network, we let the neighbors of node v
be the set of nodes w such that D(v, w) ≤ ρ, where D(v, w) is the number of
lectures with different assigned periods in v and w, and ρ is an integer param-
eter. ρ could be seen as the maximum number of events that would need to
be rescheduled to a different period in order to respond effectively to a disrup-
tion scenario. We calculated ρ for each ITC instance as 2 ×Np + 0.25 ×Nr,
where Np and Nr are the maximum number of period-based and room-based
disruptions possible for that instance (for ITC2 Np = 8 and Nr = 16 events).
Thus, the degree of a solution is likely to be correlated with the robustness of
the solution, as it indicates the size of the solution space that could be used
to repair that solution.

Frequency tables were formed of all solutions in each network based on
intervals of penalty and degree, and then a solution was selected from the
solutions that fall into selected intervals. The selections were made from among
the solutions with penalties that are close to the minimum penalty value,
Pmin, found by the SA algorithm. For each network, six penalty-intervals were
selected. For example, for ITC2 Pmin = 75 and all solutions had one of the
six penalty values listed in Table 1, so intervals were only defined for the
degrees. Given the penalty interval (or the penalty) we randomly sampled one
solution from the smallest degree interval, and the second solution from the
largest degree interval. In a few cases when a degree interval contained only
already selected solutions, we moved to the adjacent degree interval for the
same penalty interval.

3.2 Correlation analysis

Pearson correlations coefficients, ρmi , were calculated between each slack met-
ric, say m, and the robustness measure R using the set of 48 solutions for each
instance ITCi. Then the absolute values of these correlations were ranked
among those for each instance, in decreasing order so that the largest one is
ranked first. Letting %mi denote the rank of |ρmi |, the average rank of metric
m was calculated as, %m = 1/4

∑
i∈{1,2,5,12} %

m
i . For the nine best ranking

metrics, their correlation coefficients and average ranks, %m, are reported in
Table 2. For each of these correlation coefficients, a test of hypothesis was done
where the null hypothesis states the correlation is equal to zero.

Based on the correlations presented in Table 2 we chose three of the metrics
for further analysis, namely, CVCER, UC, and CVC , which are the best ones
for their corresponding arrays. CVCER has the best overall average rank with
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Table 2 Pearson correlation coefficients with R

CVCER UC CER CVUC SDUC CVC RSU DSU CVRSA

Ave. Rank 8.5 9.5 10.25 10.75 11.75 12.25 13.25 14 14.25

ITC1 −0.226 −0.227 −0.184 0.211 0.205 0.142 0.106 0.285[ −0.120

ITC2 0.292[ −0.384] −0.060 0.409] 0.411] 0.303[ 0.429] 0.088 −0.426]

ITC5 0.296[ −0.169 −0.321[ 0.160 0.150 0.256∗ −0.219 0.199 0.152

ITC12 0.290[ −0.319[ −0.375] 0.271∗ 0.255∗ 0.277∗ 0.176 0.154 −0.205

] : p < .01, [ : p < .05, ∗ : p < .10

statistically significant correlations for three instances. Correlation between
UC and R is negative for all four instances, although for two of them we
have sufficiently low p-values to reject the null hypothesis of 0 correlation.
CVC , on the other hand, is consistently positively correlated with R and for
three of the instances, the correlations associated with CVC are different from
zero at a statistically significant level. Recall that C[c] array contains the
number of conflict-free available periods for each course. Thus, the positive
correlation associated with CVC suggests that the more evenly such periods
are distributed across courses and the larger the average number of conflict-
free available periods is, the more robust the solution would be (with smaller
R). CVUC , the utility-adjusted version of CVC , yields a similar performance
to CVC . The negative correlations associated with UC is consistent with this
interpretation.

For all instances, the scatter plots of the nine slack metrics with R were
plotted. We observed for ITC5 that in the plot for RSU there is an outlier
solution that is increasing the correlation, however the hypothesis testing re-
sulted in not rejecting a zero correlation (see Figure 1). For the other scatter
plots, we did not see such a case of a single outlier.

3.3 Accuracy in identifying the Pareto frontier

The planned use of a slack metric is as an estimate of robustness within a
multi-objective Simulated Annealing algorithm (MOSA) with two objectives:
the penalty of the solution and its robustness. A MOSA algorithm maintains an
archive of solutions which comprises the best Pareto frontier at each iteration.
A new solution enters the frontier if there is no solution in the current frontier
which dominates it. The number of solutions that dominate a given solution s is
referred to as the domination count of solution s and the rank of that solution,
r(s), is equal to its domination count plus 1. So, a frontier is comprised of
solutions of rank 1. Since the MOSA algorithm will be designed to use the
slack metric M rather than the robustness measure R, and M is a estimator,
a solution with rank 2 defined by (P,M) might easily be on the Pareto frontier
defined by (P,R). Thus, it would be reasonable to keep in the archive, solutions
s with r(s) ≤ K, where K is an integer cutoff value, rather than r(s) = 1.
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Fig. 1 ITC5: scatter plots of R versus selected slack metrics

In this case, the final archive at the end of the MOSA algorithm’s run, A,
would be a short-list of solutions that are highly likely to contain the solutions
forming the Pareto frontier based on (P,R), F . We then would calculate the

robustness R(s) for all s ∈ A and obtain the approximate Pareto frontier F̃ ,
based on (P,R).
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Given the approach discussed above, for a metric M to performs well, we
would want a large P (s ∈ A|s ∈ F), and similarly a large P (s 6∈ A|s 6∈
F). To estimate these probabilities, we have done the following experimental
analysis. For all 48 solutions of each ITC instance i we calculated their R values
and determined the corresponding Pareto frontier Fi. Then for each slack
metric M , we calculated the rank r(s) of each solution based on (P,M) and
determined the solutions that fall into the archive A(K)i defined by the cutoff
value K. Based on the combined sample of 192 solutions, Si for i = 1, 2, 5, 12,
the estimates of P (s ∈ A|s ∈ F) and P (s 6∈ A|s 6∈ F), denoted by f+(K) and
f−(K), respectively, are defined as:

f+(K) =

∑
i | {s : s ∈ A(K)i , s ∈ Fi} |∑

i |Fi|
(4)

f−(K) =

∑
i | {s : s ∈ Si \ A(K)i , s ∈ Si \ Fi} |∑

i |Si \ Fi|
(5)

Table 3 Accuracy in identifying the solutions on the Pareto frontier

UC CVCER CVC

K f+(K) f−(K) f+(K) f−(K) f+(K) f−(K)

1 0 0.939 0 0.939 0.091 0.917
2 0.182 0.884 0.273 0.884 0.273 0.884
3 0.455 0.840 0.364 0.823 0.364 0.818
4 0.545 0.796 0.455 0.762 0.636 0.768
5 0.636 0.746 0.636 0.729 0.727 0.740
6 0.636 0.713 0.636 0.685 0.727 0.685
7 0.636 0.669 0.727 0.641 0.818 0.646
8 0.727 0.608 0.727 0.613 0.818 0.597

Table 3 presents the above fractions for the three slack metrics selected
based on the correlation analysis in Section 3 for the cutoff values K = 1, . . . , 8.
For K ≥ 4, we can see that f+(K) is consistently larger for CVC than for the
two other metrics. On the other hand, f−(K) is consistently larger for UC
than the other two. The chart in Figure 2 suggests that K = 5 constitutes a
good trade-off between f+(K) and f−(K) for CVC . At K = 5, CVC gives a
better performance than CVCER in terms of both f+(K) and f−(K). On the
other hand, comparing CVC and UC we observe that their f−(K) values are
almost identical but CVC has a better f+(K).

4 Concluding remarks

In this work an attempt has been made to develop approximate measures of
robustness in the form of slack-based estimators that could be used within
a Simulated Annealing algorithm, which would identify the Pareto frontier
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Fig. 2 CVC accuracy: the tradeoff between f+(K) and f−(K)

defined by the penalty of a timetable and a measure of its robustness. Find-
ing such fast-to-compute estimators is needed because the calculation of the
robustness measure requires too much computational effort when there are
multiple disruptions of different types.

The approximate nature of the estimators suggest that they can be used
to identify a Pareto “band”, comprised of solutions with rank less than or
equal to a cutoff value, as opposed to the frontier comprised of solutions with
rank equals 1. The performance quality of a band is judged by how accurately
it distinguishes solutions that are on the true Pareto frontier (defined by the
robustness measure) from those that are not. To this end, for each cutoff value
and estimator, we calculated estimates of the probability of a solution on the
true frontier being in the band and one not on the true frontier not being
in the band. This is done on a sample of 192 solutions (48 solutions for each
of four ITC 2007 instances). The results suggest that CVC , the coefficient of
variation of the number of conflict-free available periods for each course, is the
best one among the 33 estimators tested.

The experimental analysis presented here should be seen as a preliminary
work, as this is currently a work in progress. We are implementing a MOSA
(Multi-Objective Simulated Annealing) algorithm that uses a given estima-
tor and maintains the Pareto “band” as opposed to the Pareto frontier in
its archive of solutions. Potential extensions of this work could include find-
ing other slack-based estimators, and also investigating different robustness
measures for which slack-based estimators can provide a better performance.
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Müller T, Rudová H, Barták R (2005) Minimal Perturbation Problem in
Course Timetabling. In: Burke E, Trick M (eds) Practice and Theory of
Automated Timetabling V. Lecture notes in computer science (Vol. 3616),
vol 3616, pp 126–146, DOI 10.1007/11593577 8

Phillips AE, Walker CG, Ehrgott M, Ryan DM (2017) Integer programming
for minimal perturbation problems in university course timetabling. Annals
of Operations Research 252(2):283–304, DOI 10.1007/s10479-015-2094-z

Yasari P, Ranjbar M, Jamili N, Shaelaie MH (2019) A two-stage stochastic
programming approach for a multi-objective course timetabling problem
with courses cancelation risk. Computers & Industrial Engineering 130:650–
660, DOI 10.1016/j.cie.2019.02.050

158

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I


	Introduction
	Slack-based Estimators
	Computational results 
	Concluding remarks



