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Abstract We introduce a machine-personnel assignment problem where personnel must be trained to operate
certain groups of machines, whereas others can also be operated by interim workers hired at an additional cost.
In order to achieve a feasible or a minimum-cost assignment for long-term planning, it may be necessary to
cross-train employees on di�erent machines. However, this requires switching to di�erent machines frequently,
which is not desirable for personnel. Therefore, each switch incurs a penalty cost. This speci�c characteristic
makes the problem unique and complex when compared to well-known related problems in the literature. The
problem requires assigning each machine to a minimum number of operators for each day of a given planning
horizon while minimizing the total cost of hiring interim workers and switching machines. We provide integer
programming formulations of the problem and develop an iterated local search method to solve instances with
longer planning horizons. A comparison of the introduced methods on randomly generated instances indicate
that the iterated local search algorithm is capable of �nding high quality solutions within a reasonable time
limit.

Keywords Cross-training · Sta� assignment · Integer programming · Iterated local search

1 Introduction

The new problem studied in this paper, which we refer to as the machine-personnel assignment problem with

training and interim worker requirements (MPATI), is motivated by a real-world application from the food
and drink industry. Although we were introduced to this problem by a company operating in this speci�c
sector, it is likely that similar applications exist in other sectors involving production or process optimization
with possibilities of personnel training and hiring interim workers.

The MPATI deals with a division within the company which contains a �xed number of machines to be
operated on a daily basis and permanent workers (personnel) whose shifts and working days in the planning
horizon are predetermined. Although the majority of the machines must be operated only by personnel and
under the supervision of a quali�ed worker, it is possible, and sometimes necessary, to hire interim workers
to operate the others. Each machine requires a minimum number of operators (personnel or interim workers)
assigned to every day, while an operator can only work on exactly one machine within a working day.

At the beginning of the planning horizon, only a subset of the workers is quali�ed to supervise or operate
each machine independently. The set of quali�ed workers is not necessarily identical for di�erent machines
and, therefore, a worker quali�ed on one machine might be unquali�ed for another. Certain groups of workers
may obtain the necessary quali�cation to operate certain machines after a training period. Training is possible
only under the supervision of a quali�ed employee dedicated to work on those machines during the training
days. In order to preserve their quali�cation, workers must avoid not operating the same machine for too
many consecutive days. Otherwise, they lose their quali�cation and must undertake a short training period
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which requires working on that machine under the supervision of a quali�ed person. Assigning workers to
the same machines every day implies having only single-skilled personnel, which can result in infeasibilities
in the long term. On the other hand, workers generally prefer not to switch machines frequently, given its
additional adjusment period required. Therefore, a penalty is incurred every day a worker changes their
machine assignment.

Learning and forgetting e�ects have been well-studied in scheduling problems. In these problems, job
processing times are a�ected by the number of times a resource has performed a certain job [1,2]. The impact
of these e�ects has been analyzed on the performance of both the system as a whole and individual workers
[3,8,9].

Given the aforementioned restrictions, the MPATI requires a schedule which assigns workers to machines
for each day of the planning horizon such that the total cost of hiring interim workers and the penalty cost
of switching machines is minimized.

There are numerous examples of practical applications in the literature in which an accurate representation
of employee skills is essential [5]. While there exist many papers on sta� scheduling with �xed skills [10],
the problem setting considered in this paper is rather uncommon due to the presence of decisions concerning
employee cross-training. In one of the few related studies, Wirojanagud et al. [11] use an integer programming
model to decide when to hire, �re or cross-train employees to minimize the costs incurred by production
losses and training. In contrast to our problem setting, decisions are made at an aggregate level, without
considering individual workers who may have varying preferences. De Bruecker et al. [4] propose a three-
phase integer programming approach for optimizing the shift and training schedule of aircraft maintenance
workers. Emphasis is placed on �nding the optimal trade-o� between low-cost schedules that require highly
cross-trained workers and the training costs required to establish such a workforce. The impact of long-term
sta�ng decisions has been studied by Komarudin et al. [7] who introduce a methodology for evaluating the
e�ect on operational costs associated with sta� allocation when exists multiple skills among the workforce
being scheduled. For a comprehensive review of sta� scheduling and personnel rostering literature, we refer
to [6].

Our contribution in this paper is threefold. First, we introduce a new, relevant machine-personnel assign-
ment problem combined with disaggregated cross-training and interim worker hiring decisions which have
never been considered in the literature. Second, we provide mathematical formulations of this newly intro-
duced problem with several valid inequalities. Third, we present a heuristic method which produces very high
quality solutions within the imposed time limit.

The remainder of the paper is organized as follows: Section 2 formally describes the problem with an
integer programming (IP) formulation. This section also introduces a mixed integer programming (MIP)
variant of this IP and several valid inequalities obtained by exploiting practical properties of the problem.
Section 3 provides an Iterated Local Search (ILS) algorithm for solving the MPATI. The performance of
both mathematical models and the heuristic algorithm are then evaluated on randomly generated instances
in Section 4. Finally, we conclude and o�er directions for future research in Section 5.

2 Problem formulation

Given a set of workers P working the same shift of a process unit in a factory or a company, the problem
consists of operating a set of machines M during a planning horizon denoted by a set of days D. While a
subset MN of machines M can only be operated by workers in P , the remaining set M −MN = M I of
machines can also be operated by interim workers who must be hired at additional cost f per person per day.
Each machine m ∈M requires a minimum number of operators nmd on day d ∈ D.

At the beginning of the planning horizon, not every worker is quali�ed to independently operate every
machine. This information is available via a skill matrix S = [spm] where spm = 1 if worker p ∈ P is quali�ed
to operate machine m ∈ M without supervision and spm = 0 otherwise. A worker p ∈ P can undergo a
training period of lpm days (not necessarily consecutive) to become quali�ed to operate machine m ∈ M
without supervision. While trainees are considered as operating workers, they can only be trained on a
machine if there is a quali�ed worker assigned to the same machine on the same day. A worker p ∈ P must be
assigned to exactly one machine on each working day d ∈ Dp where Dp ⊆ D is the set of days that worker p
is available. Worker p who is not assigned to a machine for Cp consecutive working days of Dp must undergo
a short retraining of Rp days (not necessarily consecutive) on that machine to reacquire their quali�cation.
We refer to Cp as `skill memory' throughout the remainder of the paper.

Although working on di�erent machines on di�erent days might be inevitable for workers, it is undesirable
and therefore a penalty cost π is incurred per machine switch per worker. The objective is to �nd a machine-
worker assignment for the entire planning horizon while minimizing the total cost of hiring interim workers
and switching penalties.
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In order to formulate this problem as an IP model, we de�ne the following additional parameters:

e0p: the index of the �rst working day of worker p.
edpk: the index of the k-th previous working day of worker p for day d ∈ Dp.
hpm: the number of consecutive working days worker p ∈ P has not been working on machine m ∈M .
tpm: the number of training days of worker p ∈ P on machine m ∈M .

Moreover, we introduce the following decision variables:

xpmd = 1 if worker p ∈ P is assigned to machine m ∈M on day d ∈ D, 0 otherwise.
γpmd = 1 if worker p ∈ P is quali�ed to work on machine m ∈M on day d ∈ D, 0 otherwise.
wpmd = 1 if worker p ∈ P is quali�ed and working on machine m ∈M on day d ∈ D, 0 otherwise.
αpmd = 1 if worker p ∈ P lost their quali�cation for machine m ∈M on day d ∈ D, 0 otherwise.
τpmd = 1 if worker p ∈ P is being trained on machine m ∈M on day d ∈ D, 0 otherwise.
ypd = 1 if worker p ∈ P switches to a di�erent machine on day d ∈ D, 0 otherwise.
zmd: the number of interim workers assigned to machine m ∈M on day d ∈ D.

The following is an IP formulation for the MPATI.

(IP ) min
∑

m∈MI

∑
d∈D

fzmd +
∑
p∈P

∑
d∈Dp

πypd (1)

s.t.
∑
m∈M

xpmd = 1, ∀p ∈ P, d ∈ Dp, (2)

wpmd + τpmd = xpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (3)∑
p∈P :d∈Dp

xpmd ≥ nmd, ∀m ∈MN , d ∈ D, (4)

zmd +
∑

p∈P :d∈Dp

xpmd ≥ nmd, ∀m ∈M I , d ∈ D, (5)

τpmd ≤
∑

q∈P :d∈Dq

wqmd, ∀p ∈ P,m ∈M,d ∈ Dp, (6)

xpmd − xpmedp1 ≤ ypd, ∀p ∈ P,m ∈M,d ∈ Dp, (7)

xpmedp1 − xpmd ≤ ypd, ∀p ∈ P,m ∈M,d ∈ Dp, (8)

wpmd ≤ γpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (9)

γpme0p ≤ spm, ∀p ∈ P,m ∈M, (10)

γpmd ≤
Cp−hpm∑

k=1

xpmedpk , ∀p ∈ P,m ∈M,d ∈ Dp : edp(Cp−hpm) = 0, (11)

γpmd ≤
Cp∑
k=1

xpmedpk , ∀p ∈ P,m ∈M,d ∈ Dp : edpCp ≥ 0, (12)

d∑
j=0:j∈Dp

τpmj ≥ (lpm − tpm)γpmd, ∀p ∈ P,m ∈M,d ∈ Dp : spm = 0, (13)

γpmedp1 − γpmd ≤ αpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (14)

d∑
j=i:j∈Dp

τpmj ≥ Rpγpmd +Rp(αpmi − 1), ∀p ∈ P,m ∈M,d, i ∈ Dp : i ≤ edpRp , (15)

xpmd, γpmd, wpmd, αpmd, τpmd ∈ {0, 1}, ∀p ∈ P,m ∈M,d ∈ Dp, (16)

ypd ∈ {0, 1} ∀p ∈ P, d ∈ Dp, (17)

zmd ∈ {0} ∪ Z+ ∀m ∈M,d ∈ D. (18)

Objective function (1) minimizes the total cost of hiring interim workers and switching machines. Con-
straints (2) assign a machine to each worker on each of their working days, while Constraints (3) make sure
that this worker is either training or quali�ed (but not both) for that machine on that day. Constraints (4) and
(5) assign a su�cient number of operators to each machine for each day. Constraints (6) ensure that trainees
are assigned to a machine only if a quali�ed worker is also assigned to the same machine. For each working
day of each worker, Constraints (7) and (8) introduce a switch to be penalized in the objective function if on
this day this worker works on a di�erent machine than the one they worked on their previous working day.
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Constraints (9) forbid a worker to work on a machine without supervision unless they are quali�ed for that
machine on that working day. Constraints (10) indicate whether or not a worker is quali�ed to work on a
machine independently on their �rst working day. Constraints (11) and (12) restrict the number of consecu-
tive working days that a quali�ed worker can avoid working on a given machine and yet remain quali�ed for
it. Constraints (13) ensure that a worker obtains the quali�cation to work on a machine without supervision
only after su�cient training. The minimum number of required training days for this �rst quali�cation varies
among workers and depends on their training level at the beginning of the planning horizon. By Constraints
(14), each day a worker loses their quali�cation on a machine is captured and Constraints (15) ensure that
upon losing the quali�cation this worker can become quali�ed on this machine again only after receiving the
short retraining. Finally, Constraints (16)-(18) are binary and integer restrictions.

Note that the integer restrictions on y variables can be relaxed as the right hand sides of (7) and (8)
are always integral and the coe�cients of these variables are nonnegative in the minimization-type objective
function. Given that nmd values are integer, a similar reasoning allows us to also relax the integrality restric-
tions on z variables as well, leading to an MIP variant. Additionally, the requirements satis�ed by Constraints
(4) and (5) can also be expressed as in Constraints (19) and (20), respectively, since an assigned personnel is
either a trainee or a quali�ed worker. Utilizing (19) and (20) further enables replacing equality (3) with an
inequality as in (21).

∑
p∈P :d∈Dp

wpmd +
∑

p∈P :d∈Dp

τpmd ≥ nmd, ∀m ∈MN , d ∈ D, (19)

zmd +
∑

p∈P :d∈Dp

wpmd +
∑

p∈P :d∈Dp

τpmd ≥ nmd, ∀m ∈M I , d ∈ D, (20)

wpmd + τpmd ≤ xpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (21)

These modi�cations lead us to the following MIP for the EMPATI:

(MIP ) min (1)

s.t. (2), (6)− (16), (19)− (21)

0 ≤ ypd ≤ 1 ∀p ∈ P, d ∈ Dp, (22)

zmd ≥ 0 ∀m ∈M,d ∈ D. (23)

We obtain several valid inequalities by further analyzing the problem characteristics. These inequalities
can be classi�ed into two groups. The �rst group ensures that the binary variables corresponding to the
following decision pairs cannot cannot take value one at the same time for a worker-machine combination:

Pair 1: lose quali�cation and be quali�ed on the same day (24)
Pair 2: lose quali�cation and work as a quali�ed worker on the same day (25)
Pair 3: lose quali�cation on a day and work on the previous day (26), (27)

αpmd + γpmd ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (24)

αpmd + wpmd ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (25)

αpmd + τpmedp1 + wpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (26)

αpmd + xpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp. (27)

Similarly, the second group ensures that the binary variables corresponding to the following decision pairs
cannot take value one at the same time for a worker-machine combination:

Pair 1: train and be quali�ed on the same day (28)
Pair 2: train on a day and be quali�ed on the previous day (29)
Pair 3: train on a day and work as a quali�ed worker on the previous day (30)

τpmd + γpmd ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (28)

τpmd + γpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (29)

τpmd + wpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp. (30)
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3 Iterated local search

The MPATI is typically solved for a planning horizon of multiple months as the required training for a
worker to qualify for a new machine typically takes several weeks. Preliminary experiments have shown that
while integer programming may be used to �nd solutions when considering planning horizons of a few weeks,
large-scale problems cannot be solved with available solvers. To address these problem instances, an Iterated
Local Search (ILS) algorithm is introduced. Algorithm 1 outlines the main components of the proposed ILS,
where S0 is the initial solution and f(S) is an evaluation function which returns the cost of solution S.

Algorithm 1: Iterated local search

Data: S0, f(S)
Result: S

1 S ← localSearch(S0);
2 while time limit not exceeded do

3 S′ ← perturb(S);
4 S′ ← localSearch(S′);
5 if f(S′) ≤ f(S) then
6 S ← S′;

7 return S;

To obtain an initial solution S0, a constructive heuristic �rst assigns one quali�ed worker to each machine
in MN . Then, randomly selected workers who are available are assigned until the minimum number of
operators nmd is reached. Finally, any workers still available are assigned to the machines in M I . These steps
are repeated for each day in the planning horizon.

3.1 Solution representation

The proposed ILS operates on a direct solution representation consisting of a two dimensional matrix S =
(P ×D) whose values correspond to the machine assigned to worker p ∈ P on day d ∈ D. To avoid feasibility
issues, two hard constraints are relaxed during the search: machine sta�ng requirements (Constraints (4) and
(5)) and trainee supervision (Constraints (6)). Violations of these constraints are penalized in the evaluation
function f(S). Possible compensation between the constraint penalties and the problem's real objective
function (Equation (1)) is avoided by using a two-level lexicographic evaluation function. The �rst level sums
all violations of the relaxed hard constraints while the second corresponds to the problem's original weighted
sum function objective.

To identify violations of the trainee supervision constraint, an auxiliary datastructure is employed which
maintains a training label Tpmd = (l, c, δ, s) for each worker p ∈ P , machine m ∈ MN and day d ∈ D. The
label indicates the current skill level l ∈ {none, trainee, quali�ed}, the number of days c the worker has been
level l, the previous day δ the worker was assigned to machine m and a boolean s which indicates whether
or not the worker is eligible for a short retraining on this machine. Algorithm 2 sets the training labels for
worker p on machine m from day d′ onwards. The procedure updateWorking() adjusts the training label on
day d after working an additional day on the machine. It is possible for a worker to transition from trainee to
quali�ed if the required number of training days is reached. However, if the last time the worker was assigned
to the machine was too long ago, that is, d−δ > Cp, it is also possible to transition back to the trainee status.
Similarly, updateIdle() sets the training label on day d when the worker is not assigned to the machine. All
transitions are possible in this case, even to the none status when considering the situation where a worker
was previously quali�ed but has lost it on this day.

Algorithm 2: Setting training labels

Data: p, m, d′

1 foreach d ∈ D : d ≥ d′ do
2 if S(p, d) = m then

3 Tpmd ← updateWorking();
4 else

5 Tpmd ← updateIdle();

As Algorithm 2 only updates the training labels from day d′ onwards, delta evaluation of the trainee
supervision constraint is straightforward to implement. Similarly, identifying violations of Constraints (4)
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and (5) and calculating the problem's real objective may be accelerated by only re-calculating the parts of
the solution which have been changed.

3.2 Local search and perturbation

The main drivers of ILS' performance are the local search and perturbation procedures. In the local search
performed at lines 1 and 4 in Algorithm 1, two parametrized neighborhood structures are used:

� change(k): assigns a worker to a machine for k consecutive days on which the worker is available,
� swap(k): swaps the assigned machines of two workers for k consecutive days on which these workers are
available.

The local search procedure is instantiated with two variants of each neighborhood structure: one in which k
is randomly chosen in each iteration from the interval [1, 30] and another with k = 1. Rather than performing
a full neighborhood search in each iteration, one new solution is randomly sampled and evaluated.

The perturbation procedure at line 3 in Algorithm 1 is used to escape from local optima reached by the
local search procedure. This is achieved through a random walk of γ steps in the change(k) and swap(k)
neighborhoods. Based on preliminary experiments, this parameter was set to γ = 100.

4 Computational study

In order to evaluate the performance of our methods under di�erent planning settings, we randomly generated
�ve sets of instances based on the real data provided by the company. In all instances, the interim cost f = 264,
the switching cost π = 60, the number of workers |P | = 40 and the number of machines |M | = 15. Only
three of these machines can be operated by interim workers, that is, |M I | = 3. Each instance set corresponds
to a �xed-length planning horizon, as shown in Table 1. For all instances in the same set, the number of
days required for training is identical for all machine-personnel pairs, that is, lpm = λ for all m ∈ M and
p ∈ P . However, not every worker can be trained on a machine; this 0-1 (binary) parameter value is chosen
randomly and may vary among instances of the same set. Similar to training, Cp = C and Rp = R, ∀p ∈ P
in all instances of the same set. In addition to |D|, Table 1 reports the l, C and R values for each instance
set.

Table 1 Planning horizon, training, skill memory and short retraining lengths (in days) for each instance set.

Horizon Training Skill memory Short training
Instance set |D| λ C R

1 5 1 ∞ 0
2 10 2 5 1
3 20 4 10 2
4 60 12 20 3
5 260 60 20 3

Each set contains four instances which can be subdivided into two groups. For each group, a unique
combination of random data generation probabilities is employed. These probability combinations imply that
workers in the �rst group have fewer skills and less past training (yet to get the quali�cation) than those
in the second group at the beginning of the planning horizon. Moreover, in the long run, for the �rst group
fewer machines are available and a higher number of workers are needed.

We implement all mathematical models and the ILS algorithm in Java and use CPLEX 12.8 to solve the
mathematical formulations. The experiments are run on a cluster of Intel Xeon CPU E5-2860 @2.50GHz with
24 cores and 64GB of RAM. The time limit for each run is set to �ve hours for each method. At most four
threads are allowed for CPLEX runs. The ILS is run ten times per instance with di�erent seed values for the
algorithm's random number generator.

The �rst column of all the remaining tables in this section provides the instance code in format `#1_#2'
where #1 = |D| indicates the length of the planning horizon and #2 is a unique identi�er to associate the
instance with the aforementioned groups and seeds. More speci�cally, instances with #2 = 1, 2 belong to the
�rst group while those with #2 = 3, 4 belong to the second group. Columns `Obj' provide the value of the
solution obtained from the corresponding method whereas `g%' indicates the gaps reported by CPLEX at
the end of the time limit.
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Table 2 Comparison of mathematical models with and without valid inequalities

IP MIP IP + (24)-(30) MIP + (24)-(30)

Inst. Best Obj Obj g% Obj g% Obj g% Obj g%

5_1 360 360 73.3 360 73.3 360 72.8 360 73.3
5_2 120 120 65.6 120 50.0 120 50.0 120 50.0

5_3 10044 10044 1.8 10044 1.8 10044 2.7 10044 1.2

5_4 8952 8952 6.0 8952 5.4 8952 4.7 8952 6.0

Avg. 4869.0 4869.0 36.7 4869.0 32.6 4869.0 32.5 4869.0 32.6

10_1 540 540 65.4 540 67.3 540 67.3 540 67.3
10_2 360 360 68.6 360 70.1 420 74.4 420 74.4
10_3 16344 16344 17.3 16644 18.8 16344 17.3 18084 25.2
10_4 12972 12972 22.2 12972 21.7 12972 22.7 12972 22.2

Avg. 7554.0 7554.0 43.4 7629.0 44.5 7569.0 45.4 8004.0 47.3

20_1 13044 13044 94.8 27912 97.6 41556 98.4 40152 98.3
20_2 12384 14700 96.7 34608 98.6 12384 96.1 44640 98.9
20_3 54084 54084 45.2 - - - - - -
20_4 47292 47292 39.8 60108 52.7 54120 47.4 54120 47.4

Avg. 31701.0 32280.0 69.1 40876.0 83.0 36020.0 80.6 46304.0 81.6

Avg. 14708.0 14901.0 49.7 15692.7 50.7 14346.5 50.3 17309.5 51.3

Table 2 provides the results obtained from the two mathematical formulations with and without the valid
inequalities presented in Section 2. These models are not tested on instances with a planning horizon longer
than 20 days as they are too large for CPLEX to handle. The best solution value obtained among the four
models is reported under column `Best Obj'. Although the MIP combinations terminate with a smaller dual
gap for some instances, the IP provides the best gaps on average and the best solution values in all but one
instance where the IP with the valid inequalities produces the best solution. We also observe that the gaps
are larger for instances from the �rst group in each set.

Table 3 Comparing the ILS solution values with the best IP/MIP results

Best IP/MIP ILS

Inst. Best Obj Obj LB Min Obj Max Obj Avg. Obj

5_1 360 360 97.9 360 360 360.0

5_2 120 120 60.0 120 120 120.0

5_3 10044 10044 9923.0 10044 10044 10044.0

5_4 8952 8952 8532.0 8952 8952 8952.0

Avg. 4869.0 4869.0 4653.2 4869.0 4869.0 4869.0

10_1 540 540 186.0 540 540 540.0

10_2 360 360 112.9 360 360 360.0

10_3 16344 16344 13524.0 16344 16344 16344.0

10_4 12972 12972 10152.0 12972 12972 12972.0

Avg. 7554.0 7554.0 5993.7 7554.0 7554.0 7554.0

20_1 1980 13044 681.9 1980 2040 2028.0
20_2 1800 12384 488.0 1800 1920 1890.0
20_3 35844 54084 29664.0 35844 35844 35844.0

20_4 37212 47292 28452.0 37212 37212 37212.0

Avg. 19209.0 31701.0 14821.5 19209.0 19254.0 19243.5

Avg. 10544.0 14708.0 8489.5 10544.0 10559.0 10555.5

In Table 3, we compare the solution values of the ILS with the best upper and lower bound values obtained
from the mathematical formulations. The column `Best Obj' reports the best solution value obtained from
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the four mathematical models and the ten runs of the ILS. The last three columns of this table provide the
minimum, maximum and the average solution values from the ten runs of the ILS for each instance. The
ILS is able to �nd a solution with the same objective value as the best model solution in all instances with
|D| = 5, 10, and for the instances with |D| = 20 it provides a better solution than the best obtained by the
formulations. Although the solution values may seem far from the lower bound values, by introducing the
ILS solutions to CPLEX via a warm start function (addMIPStart) we are able to con�rm that the heuristic
solutions are in fact optimal for the instances with |D| = 5. Therefore, it is likely that the solutions provided
by the ILS for larger instances are also optimal or near-optimal.

Table 4 Detailed results for all instances solved by the ILS approach

ILS

Obj Average number of

Inst. Min Max Avg, Std. Switches Interims

5_1 360 360 360 0.00 6 0
5_2 120 120 120 0.00 2 0
5_3 10044 10044 10044 0.00 53 26
5_4 8952 8952 8952 0.00 48 23

10_1 540 540 540 0.00 9 0
10_2 360 360 360 0.00 6 0
10_3 16344 16344 16344 0.00 92 41
10_4 12972 12972 12972 0.00 93 28

20_1 1980 2040 2028 25.30 33.8 0
20_2 1800 1920 1890 42.43 31.5 0
20_3 35844 35844 35844 0.00 197 91
20_4 37212 37212 37212 0.00 233 88

60_1 7260 7560 7416 117.30 123.6 0
60_2 4500 4800 4644 110.27 77.4 0
60_3 109800 109800 109800 0.00 664 265
60_4 108192 108192 108192 0.00 646 263

260_1 37008 39828 38136 945.64 626.8 2
260_2 28680 30480 29730 476.03 495.5 0
260_3 471396 471516 471450 52.54 2823.9 1144
260_4 482040 482220 482112 61.97 2909.2 1165

Table 4 presents the detailed results obtained from the ILS when solving all instances. In addition to the
minimum, maximum and average, this table also provides the standard deviation of the solution values of
the ten runs in the �fth column. The solution values of the ten runs are identical for 60% of the instances.
The average standard deviation across all instances is 112.3. The last two columns of this table provide the
average number of switches and interim workers hired. We observe that the solutions for the �rst group of
instances have fewer switches and interim workers compared to the second group. Although it is costly, it is
worth noting that switching machines is unavoidable in order to obtain a feasible solution in these instances.

5 Conclusion

This paper addressed a new sta� assignment problem where daily personnel requirements of di�erent skills
may vary over the planning horizon. This suggests varying duty assignments for the personnel which may
eventually lead to losing skills if not used for too long. It is possible to train or retrain for di�erent skills,
however, these training decisions result in a very challenging problem for which even �nding a feasible solution
necessitates a signi�cant amount of computational e�ort. Another challenging component penalizes switching
duties as it requires an additional adjustment period and is undesirable by personnel. Together with the
decisions concerning the number of interim workers to hire on a daily basis, reaching high quality solutions
in a reasonable amount of time is only possible via tailored methods.

We introduced integer and mixed integer programming formulations with several valid inequalities. In
our experiments, these formulations reached high quality solutions within a reasonable amount of time for
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problems with short planning horizons. However, they were unable to handle problems with long planning
horizons with the commercial solver that was utilized. The solver also had di�culties in closing the dual
gap, especially, for the �rst group of instances where the employees have fewer skills and less training at the
beginning of the planning horizon. This motivated the development of an iterated local search algorithm to
solve larger problem instances, which produced high quality solutions when solving the instances generated.

An interesting extension to the problem could be to include shift rostering as an additional decision as this
would enable grouping operators with complementary skills in addition to cross-training them. Alternatively,
the problem could be extended to enable training of the interim workers so that they can be allocated to the
machines which require more complicated skills, more speci�cally, the non-interim machines. From a method-
ological perspective, it is worthwhile investigating the structural properties of the proposed mathematical
models for developing possibly competitive matheuristic approaches.
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