
Designing Reusable and Run-Time Evolvable Scheduling
Software

Güner Orhan · Mehmet Akşit · Arend Rensink

Abstract Scheduling processes have been applied to a large category of application
areas such as processor scheduling in operating systems, assembly line balancing in
factories, vehicle routing and scheduling in logistics and timetabling in public trans-
portation, etc. In general, scheduling problems are not trivial to solve due to complex
constraints. In this paper, we consider reusability and run-time evolvability as two im-
portant quality attributes to develop cost-effective software systems with schedulers.
Although many proposals have been presented to enhance these quality attributes
in general-purpose software development practices, there has been hardly any pub-
lication within the context of designing scheduling systems. This paper presents an
application framework called First Scheduling Framework (FSF) to design and im-
plement schedulers with a high-degree of reusability and run-time evolvability. The
utility of the framework is demonstrated with a set of canonical examples and evolu-
tion scenarios. The framework is fully implemented and tested.

1 Introduction

Scheduling is a decision-making process in which the resources are allocated to the
activities. Scheduling processes have been applied to a large category of application
areas such as processor scheduling in operating systems [43], car scheduling in ele-
vator systems [35], facility scheduling at airports [40], antenna scheduling in radar
systems [23], work-force scheduling in project management [30] and assembly line

Güner Orhan
University of Twente
E-mail: g.orhan@utwente.nl

Mehmet Akşit
University of Twente
E-mail: m.aksit@utwente.nl

Arend Rensink
University of Twente
E-mail: arend.rensink@utwente.nl

339

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

balancing in factories [7], vehicle routing and scheduling in logistics and timetabling
in public transportation [14].

Implementing software systems that incorporate scheduling systems can be a time
consuming process. In addition to dealing with well-known challenges in designing
software systems, the software engineer has to define and implement the required
tasks, resources, associated parameters, objectives, strategies, and the constraints,
and/or algorithms. Dealing with all these constraints can be a very time consum-
ing and error-prone tasks. For example, the constraints must be considered in a very
precise and robust manner: Tasks have to be scheduled within their life-scope; peri-
odic tasks have to be spawned at each inter-arrival time; the resource requirements
of the allocation have to be realized for each task; the precedence relations have to
be satisfied for each allocation; the capacity constraints of resources have to be sat-
isfied; the preemption capability is supposed to be realized; the migration capability
has to be satisfied; the mutual exclusion constraint among resources have to be sat-
isfied. A highly reusable and run-time evolvable framework designed specifically in
the scheduling domain can ease this burden. Domain specific class libraries with the
necessary operations and attributes can be instantiated with the parameters of the
desired scheduler.

In this paper, we consider reusability and run-time evolvability [17,34] as two
important quality attributes.

In the literature, to the best our knowledge, the studies do not aim to develop
reusable and run-time evolvable scheduling software implementation; they rather
concentrate on specific application-dependent solutions. Since there exists hardly any
generic and expressive library, framework or design environment, the software en-
gineer has to implement all the necessary scheduling abstraction by herself, which
increases the complexity and effort. In addition, due to lack of run-time evolution
support, maintenance of continuously operating scheduling systems becomes a chal-
lenge.

This paper introduces an object-oriented application framework called FSF which
can be utilized in implementing schedulers with a high-degree of reusability and run-
time evolvability. The utility of the framework is demonstrated with a set of canonical
examples and evolution scenarios. The framework is fully implemented and tested.

The remaining sections of this paper are organized as follows: the next section
presents the problem statement and objectives that are addressed in this paper. The
related work is summarized in Section 3. The section 4 presents the necessary back-
ground knowledge to understand the terms and symbols used throughout this paper.
The software architecture of the framework is described in Section 5. In Section 6,
as case studies, a set of canonical examples is introduced to evaluate the proposed
framework. Finally, the evaluation of the framework and concluding remarks are pre-
sented in Section 7.

2 The Problem Statement and Objectives

A considerable number of publications have been presented in the literature to guide
software engineers in designing software systems [44]. It is generally agreed that

340 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

certain quality attributes play an important role along this line. Although many pro-
posals have been presented to enhance the quality attributes reusability and run-time
evolvability in software development practices, there has been hardly any publication
within the context of designing scheduling systems.

Our focus on these software quality attributes in this paper is limited to the
scheduling domain.

We adopt the term reusability as ease of use of a dedicated software library and
associated tools in creating a large category of scheduling systems. To this aim, to
create a particular scheduling system, the code written from scratch must be much
less than the code of the library that is reused. To fulfil the reusability requirement,
the concept of application-frameworks [28] can be utilized. An object-oriented appli-
cation framework is defined within a context of an application domain and consists
of a set of dedicated class hierarchies which can be instantiated and/or sub-classed to
create a specific application in that domain. An important motivation for using this
approach is two-fold: to provide a reusable programming library for the programmer
within the scheduling domain, and to give flexibility to the programmer to alter the
library if needed.

We adopt the term run-time evolvability as an ease of modification of an existing
scheduling software with respect to a new meaningful set of user requirements. Since
many of scheduling systems, such as airport systems and production systems must
be continuously operational, solutions to the new requirements must be introduced to
the system at run-time. The term meaningful here refers to the fact that requirements
are natural and defined within a single application context. It is assumed for example
that an airport scheduling system is not expected to evolve into an elevator scheduling
system.

Within the context of this paper, run-time evolvability must be supported for the
following cases:

A. Changing (adding, removing or modifying) resources and/or tasks;
B. Changing the optimization criteria based on the number of existing tasks.
C. Changing the timing constraints of the tasks.
D. Changing the dependency specifications among existing tasks.
E. Changing the attributes of existing tasks.

3 Related Works

There have been a considerable number of publications which reports on the practical
applications of frameworks [31,28,1]. To the best of our knowledge, none of them
has been applied to the domain of scheduling.

There are many researchers focusing on scheduling problems, and such much re-
search work has been published in this area [20,10]. Accordingly, a large category of
algorithms has been developed. In addition, different kinds of solver-based solutions
have been studied and presented in the literature to address planning and scheduling
problems [18,22,25]. There exists also a study [29] which presents a formal frame-
work to implement reusable schedulers. However, these publications do not aim at
creating a framework satisfying reusability and run-time evolvability as defined in

Designing Reusable and Run-Time Evolvable Scheduling Software 341

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

4 Güner Orhan et al.

this paper. In our related work, a software product line approach for schedulers is
presented [36]. This paper, however, focuses on the early phases of product-line soft-
ware development processes, as such it mainly deals with product management and
feature models. The software architecture, run-time environment and the result of
execution of schedulers are not addressed.

4 Background on Scheduling Domain

Constraints and objectives are the two basic factors that influences a scheduling pro-
cess. Within the context of scheduling domain, constraints narrow down solution
space, whereas objectives are used for determining the perfect fitting solution. From
this perspective, any scheduling problem is an optimization problem.

The term job is defined as a set of works which need to be completed by utilizing
resources. In addition to the term job, different names are also used, such as task
[10], activity, operation, etc. [20,38]. For the sake of unity, we adopt the term task
throughout the article.

r(j,1) d(j,1)

τ j

cj

r(j,2) d(j,2)

pj

...
t

τ j τ j τ j

(a) A task with infinitely many number of instances.

r(s,0) d(s,0)

τ s

cs

t

(b) A task with one instance.

Fig. 1: An example schedule of two tasks and their fundamental timing related at-
tributes. The terms in the subscript of J refer to the index of a task and an index of an
instance of a task, respectively.

A task is defined using the following fundamental timing related attributes:

– r(i, j): the release time of the instance j of a task i. It denotes the earliest start time
of a task.

342 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

– c(i, j)(ci): the execution time of the instance j of the task i. It corresponds to the
duration when a task needs to be executed. It has similar meanings with the terms
processing time in [38,47]; execution time in [9,38]; computation time in [10,42];
run time in [32]; and worst-case execution time in [13,46]. The term worst-case
execution time corresponds to the term execution time in our terminology.

– d(i, j): the deadline (due date) of the instance j of a task i. It means the latest finish
time of a task.

– pi: the period of a task i. Unlike the previous attributes, this does not depend
on any instance, but on a task; that is why it is shown with a single subscript. It
corresponds to the inter-arrival time between two consecutive instances of a task.
For tasks depicted in Figure 1b, the term period has no meaning.

– wi(w(i, j)): the priority of a task i (the instance j of a task i). Similarly, it may
be either to a task- or an instance-dependent term, which indicates the relative
importance of a task (an instance of a task) among other tasks (instances of tasks).
The term weight is a synonym of the term priority.

All of these terms are shown in Figure 1 except the attribute priority. In Figure 1a,
any task instance is supposed to complete its execution within the duration between
its release time and deadline, which is called life-cycle.

In scheduling domain, the problems are defined using the traditional 3-field nota-
tion which has been introduced by Graham [20]:

α|β |γ (1)

According to this notation in Definition 1, any scheduling problem consists of three
parts, namely the machine environment (α) (resources) on which the tasks are exe-
cuted; the task characteristics (β) (constraints) which are restrictions based on tasks
and resources; and optimality criteria (γ) (objectives); these are aimed to be opti-
mized.

4.1 Machine Environment

Machine environment is denoted by a pair α1α2, namely machine identifier and num-
ber of machines, respectively. The terminology introduced in this section is used
throughout this paper.

In [20], 6 fundamental machine identifiers (α1) are introduced:

– 1: It refers to a single machine environment in which at most one task can execute
at each time instant.

– P: It refers to the environment with more than one identical machines, meaning
that the execution speed of the tasks does not vary from one machine to another.
Moreover, unless indicated to the contrary, more than one task is eligible to exe-
cute on the machines in parallel.

– Q: Unlike identical machines, the resources have different execution speed; there-
fore the execution time of a task depends on the speed of a machine. The execu-
tion time of the task j on the resource m is denoted by c(j,m).

Designing Reusable and Run-Time Evolvable Scheduling Software 343

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

– O: It is a machine environment called open-shop, where the only restriction is
that instances of tasks cannot execute on different resources in parallel. Moreover,
there exists one-to-one relation between the instances of each task and resources,
meaning that each instance has to execute on a dedicated resource.

– F : The flow-shop machine environment differs from the open-shop in one aspect.
Each instance of a task has a predefined execution path on each machine.

– J: The job-shop machine environment is more like flow-shop environment in such
a way that each instance of a task has a predefined path of execution, yet a task
does not need to be executed on each machine.

We express the number of the machines (α2) using positive natural numbers N+. For
instance, 2-machine flow-shop environment is denoted by α = F2.

4.2 Scheduling Characteristics

In this subsection, we will further elaborate on the scheduling characteristics (β)
introduced in Definition 1. The constraints are defined as follows:

– β1 = {pmtn,ε}: It expresses preemption ability (preemptability) of a task. It gives
a capability to a scheduler to suspend the execution of a task before completion.

– β2 = {r j,ε}: If this symbol exists in problem definition, then a task may have
specific release time. Otherwise, any task may start at anytime.

– β3 = {prec,ε}: Precedence relation of tasks blocks the commence of an instance
of a task in case it depends on the completion of another task. For this reason, it
is also called as dependency in the literature.

– β4 = {M j,ε}: The constraint machine eligibility obliges tasks to run on only spe-
cific set of resources.

– β5 = {p j = p,ε}: It is used to define all of the tasks with fixed execution time p.
– β6 = {d j = d,ε}: If this constraint is specified, it is guaranteed that each instance

of a task is completed before fixed deadline d.
– β7 = {s jk,ε}: This constraint is known as sequence dependent setup time and

defines the necessary time duration between the completion of the task j and
beginning of the task k.

– β8 = {batch(b),ε}: A resource may execute b tasks simultaneously if this con-
straint is defined. An entire batch is finished when the last task of a batch has been
completed and the execution times of tasks may not be equal.

– β9 = {prmu,ε}: It is only meaningful in flow-shop machine environment. The
queues in front of a resource have First-In-First-Out policy. Therefore, the order
of tasks is maintained on each machine.

The character ε indicates that the corresponding scheduling characteristic is not in
the list β .

344 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

Criteria Formula
Lateness L j =C j−d j
Earliness E j = max{−L j,0}
Tardiness Tj = max{L j,0}

Absolute Deviation D j = |L j|
Squared Deviation S j = (L j)

2

Unit Penalty U j =

{
0 if C j ≤ d j

1 Otherwise
Makespan Cmax = max

j
C j

Table 1: The commonly known functions defined in [8].

4.3 Scheduling Objectives

In the literature, we have found 7 criteria formulated based on the completion times
of tasks, which is denoted as C j [8]. The objectives are defined by minimizing or
maximizing the functions shown in Table 1.

The quality of calculated schedule is measured based on the functions above.
From this perspective, the aim of minimizing the function lateness is to complete the
tasks immediately after their release time, whereas the function earliness is the com-
plement of lateness. The objective of minimizing the function tardiness aims to avoid
only the deadline misses regardless to the placement of tasks in time. The quality of
a schedule remains the same if each task is scheduled and completed before its dead-
line. The remaining items in the list (Table 1) are derived from these functions and
are considered self-explanatory. In addition, the common objective functions are for-
mulated as maximum, summation and weighted summation over tasks. For instance,
the maximum Lmax = max

j
L j, the summation Lsum = ∑

j
L j and the weighted summa-

tion Lw
sum = ∑

j
w jL j are versions of the objective lateness. The linear combinations of

these formulas are also possible.

5 The Software Architecture of the Framework and its Configuration

In the following subsection, we present the software architecture of our scheduling
framework. In subsection 5.2, we illustrate how this framework can be configured to
create a scheduler as a solution to an example problem.

We define software architecture as an abstract (blue-print) representation of a soft-
ware system [3]. Diagrams describing software architecture can ease understanding
the essential elements of software systems. In addition, software architecture plays
an important role in determining the software quality of systems. In the following
subsections, both static and dynamic models of the architecture of the framework are
presented. The static model is expressed in an UML component diagram notation,
which shows the logical structure of our framework. It represents the important ab-
stractions, called components which have well-defined interfaces. Each component
corresponds to a piece of object-oriented program that implements a logical concern.

Designing Reusable and Run-Time Evolvable Scheduling Software 345

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

<<System >> FSF

<<Subsystem >> Resour ce

<<Subsystem >> Task

<<Subsystem >> Scheduler

Type
Defini tions

Resource
Factor y

Resource
Management

Power
Consumption

Read

Create
Resource

Define
Resource

Types

Task Factor y

Power
Consumption

Task
Management

R/W
Resource

Define
Power

Consumption

Create

Read

Create
Task

R/W
Task

Solver s Strategy

Scheduling
Process

Management

Schedule Parameter s

Delegate

Control
Solver

Read
Resources

ReadTasks

Resource
Designer

Task
Designer

Scheduler
DesignerC

reate

Se
t/

G
et

Delegate

Display
Schedule

Ini tial ize
&

Manage
Scheduler

Create

Fig. 2: The software architecture of the framework FSF depicted in UML component
diagram notation.

A component can only be invoked through its interface functions. Subsystems group
related components together. The dynamic model is expressed in an UML sequence
diagram notation. It shows how components interact with each other to perform a
system-wide behavior. In our example, we utilize sequence diagrams to express the
instantiation processes in creating scheduling software.

5.1 A Component Diagram of the Software Architecture of First Scheduling
Framework

To fulfill the objectives given in Section 2, we have designed and implemented a com-
prehensive framework [28] called FSF (First Scheduling Framework). The software
architecture of FSF is designed after an extensive study of the scheduling theory.
The components and the relationships of the architecture are derived from the essen-
tial concepts of the theory. Furthermore, the architecture is justified by considering
the applications of the theory to a large category of scheduling problems. It is im-
plemented using an object-oriented library and supported by a set of open-source
software and own developed tools.

The software architecture of FSF is symbolically shown in Figure 2. The over-
all architecture is depicted as a large rectangle with thick lines and denoted by the

346 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

UML stereotype (�System�). The architecture consists of three subsystems: Re-
source, Task and Scheduler. These are shown as dark gray rectangles and are denoted
by the UML stereotype (�Subsystem�). The components are shown as light gray
rectangles and placed in the subsystems. The users of the system are shown using the
UML actor notation (). These indicate the roles and named as Resource Designer,
Task Designer and Scheduler Designer. In practice, one or more person can fulfill the
roles. Interfaces are shown using specific symbols. Components exchange informa-
tion among each other through interfaces. These are classified under provided () and
required () interfaces. The direction of an arrow indicates a dependency relationship
from a required to a provided interface.

5.1.1 The Subsystem Resource

The subsystem Resource contains four components: Type Definitions, Resource Fac-
tory, Resource Management and Power Consumption. The interfaces of these com-
ponents are exported to the user Resource Designer.

The component Type Definitions includes all resource types defined. Currently,
three kinds of abstract resource types are provided: Active, Passive and Composite.
Abstract resource types are parameterized to create the concrete resource types such
such as Memory, CPU, Machine, Antenna, Bus, GPU, Sensor, etc.

The user Resource Designer interacts with the component Resource Factory to
create instances of the desired resources by “using” the predefined concrete resource
types.

The component Resource Management contains all the instances and provides
an interface to the user for reading and writing their properties. Furthermore, a read
interface is provided to the subsystem Scheduler.

The component Power Consumption is used to read and/or write the power-
consumption related properties of instances. The motivation for defining a sepa-
rate component is to provide sharing: different kinds of instances may share similar
power-consumption characteristics. In this case, these instances can simply denote to
the same power-consumption definition.

The rationale to define the subsystem Resources in this way is to create a hierar-
chically organized resource structures, which is motivated in the following:

According to [47], the resources in computing systems are classified as either
active or passive. While a task can only be executed on an active resource, it may also
require one or more passive resources. The traditional resource model introduced in
[20] does only support active resource. This makes it cumbersome to express tasks
which require also passive resources.

Recently, general purpose computing on graphic cards (GP-GPU) has gained im-
portance for the problems which can be divided into sub-problems such as rendering
images, performing audio operations, etc., where each of them can be executed in
parallel. While defining resources, it may be necessary to consider the hardware ar-
chitecture of GPU’s. This requires hierarchical resource models where each resource
element in hierarchy may define its own rules of accessibility. To represent complex
resource structures such as the ones adopted in GPU’s, we define both active, passive

Designing Reusable and Run-Time Evolvable Scheduling Software 347

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

and composite resources. Active and passive resources are represented as the terminal
nodes in the hierarchy.

A composite resource may embody one or more active, passive and/or com-
posite resources. The accessibility of resources is defined as follows: A task run-
ning on an active resource has access to the terminal resources of each of its an-
cestors, and all the terminal resources of each of its sibling composite resources.
For example, assume that a task executes on cpu shown in Figure 3. It has ac-
cess to the terminal resources of its ancestors, antenna, bus, memory-1 memory-2,
temp_sensor and prox_sensor; and the terminal resources of its sibling composite
resources, cache_cpu-1 and cache_cpu-2.

antenna temp_sensor prox_sensor

SYSTEM

bus

cpu

cache_cpu-1 gpu-1

memory-1 memory-2

(COMPOSITE, CompRes)

(ACTIVE, ProcUnit)

(PASSIVE, MemoryUnit)

(PASSIVE, TransferUnit)

(PASSIVE, SensorUnit)

(PASSIVE, Peripheral)

PROCESSORS

CPU GPU

cache_gpu-1 gpu-m cache_gpu-m

…	

…	
GPU-1 GPU-M

cache_cpu-2

CACHE
CPU

Fig. 3: An example resource tree defines the accessibility relation among the re-
sources.

Recently, reducing energy consumption has become more and more important.
For this reason, for example, Dynamic Voltage Scaling (DVS) have been introduced
to reduce power consumption of processing units [11,33,37]. This requires dedicated
task scheduling. To reduce energy consumption within the timing constraints, the
scheduler has to consider both voltage levels and corresponding executing speeds.

To express such scheduling problems, in FSF power consumption is explicitly
modeled in two options: discrete- and continuous-state power consumption options.
For the resources specified as the former, there exist power states, each of which is

348 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

the pair of the value sc (0 < sc≤ 1.0) and the power consumption value pc; whereas
for the resources belonging to the latter, any value between minimum and maximum
power scales can be chosen.

In [24], resources are categorized as multi or single-unit capacity. A resource with
multiple units, each of which is serially accessible entity is reserved partially to more
than one tasks; whereas a single-unit resource can only be accessed by a task at a
time. Therefore, we defined the numeric attribute capacity representing the number
of units for resources with both single- and multi-unit capacities.

To express simultaneous access in utilizing the capacity of a resource as explained
in [10], we defined the term mode. If a resource operates at a shared mode, each
capacity unit can be accessed by tasks, simultaneously. Otherwise, the resource can
either work in capacity-based exclusive mode at which each capacity unit can be
accessed by at most one task at a time or semantic-based exclusive mode at which
the utilization of any capacity unit of a resource is blocked in case a task is executing
on one of its exclusive resources.

5.1.2 The Subsystem Task

The subsystem Task includes two components: Task Factory and Task Management.
The user Task Designer utilizes the component Task Factory to create instances

of tasks.
The component Task Management contains all the instances and provides an inter-

face to the user Task Designer for reading and writing their properties. Furthermore,
a read interface is provided to the subsystem Scheduler.

Like resources, tasks can also have composite structure. A task can be classified
either composite or terminal. The tasks assigned to a composite resource are recur-
sively dispatched to resources within its life-cycle until there is no composite task
left. The design rationale for this way of allocation of tasks is to ease the scheduling
process since it divides a scheduling problem into simpler sub-problems and deals
with each of them in its own time scope. Since the computational complexity is sup-
posed to decrease, this process should reduce the execution time of the scheduler.
In addition, it groups the relatively similar sub-tasks which have the same resource
requirements.

There are also a number of task attributes which are not shown in Figure 2 for
brevity reasons. Some essential ones are described in the following:

Class Time has been defined to provide system-wide consistency for time-related
attributes, and it is used within the definition of tasks. It has class variables such as
resolution of time, and unit of time.

The attribute precedence constraint is also used in the definition of tasks. It en-
sures tasks to execute in certain order [10]. The predecessor task has to complete its
execution to let the successor task of it start.

In [2], a precedence constraint has been expressed by data dependency; a prede-
cessor task fires a token when it finishes and the successor task has to consume this
token in order to start. We have adopted a more expressive constraint specification,
which extends the token-based dependency with the relational operators AND, OR
and the temporal operator AFTER.

Designing Reusable and Run-Time Evolvable Scheduling Software 349

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

The attribute resource requirements is defined for each task to express capacity
requirements for a set of actual resources belonging to the same concrete resource
type.

For brevity, the attributes that are used in tasks such as time, precedence and
resource requirements are not shown in Figure 2. These are set in the component
Task Management.

The other timing related attributes of tasks will be handled in Section 6.

5.1.3 The Subsystem Scheduler

The subsystem Scheduler consists of five components: Scheduling Process Manage-
ment, Parameters, Strategy, Solvers and Schedule.

The component Scheduling Process Management functions as the coordinator. To
this aim, it first interacts with the user Scheduler Designer to set the scheduler-related
properties and store them in the component Parameters, then retrieves the informa-
tion about the resources and tasks from the corresponding subsystems, determines the
strategy to be used, and activates the solver. Finally, it stores the result of the solver
in the component Schedule.

The component Strategy determines which solver algorithm to be utilized. To
accomplish this, it interacts with the Scheduling Process Management and makes a
request to the component Solver to select a particular solver algorithm.

The component Solvers incorporates a set of solver algorithms.
In addition to contain the schedule, the component Schedule provides the schedul-

ing execution context and offers various utilities to display the results in different
output format.

To realize the token-based data dependency explained in Section 5.1.2, each sched-
uler instance includes an attribute corresponding to a token pool.

We consider the scheduling problem as an optimization problem; This requires
the definition of the optimization criteria. In Section 4.3, various criteria are shown in
Table 1. The purpose of the optimizer is to either minimize or maximize the selected
criterion. In our framework, all the criteria that are shown in the table have been
implemented.

The scheduling policy is used to determine the relative importance of tasks for
an underlying system. Currently, our framework supports the policies FIFO (First-
In-First-Out), EDF (Earliest Deadline First), SJF (Shortest Job First), LJF (Longest
Job First), RM (Rate-Monotonic, i.e. Shortest Period First), ERT (Earliest Release
Time). It is also possible to define new policies by modifying the related parts in the
framework.

Since our framework adopts solver-based approach, the solver has to be specified.
The available solvers are SCIP, MiniSat, MipWrapper, Mistral, Mistral2, SatWrap-
per, Toulbar2 and Walksat.

350 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

(1) create

(2) create

create

(3) create instance for cpu using cpu-t

create

(4) create instance for mem using mem-t

(5) set the capacity to 1

(6) set the capacity to 512

create

(7) create instance for discrete-state for 0.5 and 1.0 scales

(8) add state: < 0.8,75 >

(9) get states

[0.5, 0.8, 1.0]

create

create instance for fixed-state

set power consumption to cpu-pc

set power consumption to mem-pc

(10) add the resource cpu

(11) add the resource mem

ResourceDesigner: System:CompositeResource ResourceFactory PowerFactory cpu-t:Type mem-t:Type

cpu:TerminalResource

mem:TerminalResource

cpu-pc:FixedStatePC

mem-pc:FixedStatePC

Fig. 4: Sequence diagram to create and configure cpu and mem resources; and add
them to the composite resource System.

5.2 Instantiation of the Framework to Create a Scheduler

Application frameworks [28] offer a reusable library in a certain domain which must
be instantiated and if necessary extended to create a particular application. In our ap-
proach, to create a dedicated scheduler, the framework must be instantiated according
to the requirements of the desired scheduler. Since run-time evolvability is one of the
key objectives, an instantiation process is realized at run-time.

In the following subsections we illustrate an instantiation process for a particular
scheduling example in three steps: instantiation of resources, tasks, and the scheduler.

5.2.1 Instantiation of Resources

Assume that we would like to create an implementation of a resource model with two
elements: cpu and mem. In FSF, as shown in Figure 4. this can be realized at run-time
by calling on the necessary operations on the corresponding components/objects.

Figure 4, shows a sequence diagram in UML to illustrate the creation process. On
the top left of the figure, as an UML actor notation, the role Resource Designer is
shown who is in charge of defining the resource model. The vertical bars on the most
left side of the figure depict the actions that are initiated by Resource Designer. The

Designing Reusable and Run-Time Evolvable Scheduling Software 351

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

create

(1) create terminal task instance

(2) set release time to Time(0)

(3) set deadline to Time(8)

(4) set period to Time(12)

(5) add resource requirement 1-unit capacity on cpu during Time(3)

(6) add resource requirement 256-unit capacity on mem

create

(7) create terminal task instance

(8) ...

create

(9) create terminal task instance

(10) ...

(11) set dependency relation to OR-relation

(12) add dependency to the token of t2 after Time(2)

(13) add dependency to the token of t3 after Time(3)

TaskDesigner: TaskFactory

t1:TerminalTask

Task Creation - t1

t2:TerminalTask

Task Creation - t2

t3:TerminalTask

Task Creation - t3

Fig. 5: Sequence diagram to create and configure the tasks t1, t2 and t3.

other vertical bars correspond to the instances which are involved in the interaction
process. The types of these components/objects, namely SystemCompositeResource,
ResourceFactory and PowerFactory, are represented at the top of the picture and
linked to their instances by dashed-lines; The sequence of interactions are from top
to bottom. In our framework, System incorporates all the resources that are created.
Initially, System is empty.

As shown in the figure, the sequence of call have the following meaning: In the
first two calls (1) and (2), the Resource Designer creates the identities of cpu and
mem types. The text on the call arrows illustrates their meaning informally. In calls
(3) and (4), by calling on ResourceFactory with the identities as parameters, actual
resource objects are created. In calls (5) and (6), the capacities of cpu and mem are
defined as 1 and 512, respectively. In calls (7), (8) and (9), the power consumption
characteristics of the resources are defined as discrete states. For illustration pur-
poses, the call (9) is defined as a read operation. The dashed line from right to left
illustrates the response for this call. Finally, in calls (10) and (11) are used to add the
created resources to the system.

352 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

create

create
create

create

(1) create scheduler instance

(2) add the tasks t1, t2 and t3

(3) assign System as a root resource

delegate
(4) set scheduling policy to FIFO

delegate
(5) set scheduling window to [Time(0) Time(18)]

delegate
(6) set migration unavailable

delegate
(7) set preemptive available

delegate
(8) set scheduling type to offline

delegate
delegate

(9) set solver to SCIP

create

delegate
(10) set objective to minimizing lateness

delegate
define and configure solver variables

create

delegate

schedule

run the solver and get results

schedule

(11) schedule tasks

(12) plot_schedule

SchedulerDesigner: sch:Scheduler SchedulingCharacteristics SchedulingStrategy SolverAdapter TokenPool

obj:ObjectiveFactory

schedule:Schedule

Fig. 6: Sequence diagram to create, configure the scheduler sch and getting the opti-
mized schedule as a graph.

5.2.2 Instantiation of Tasks

Assume that we would like to create 3 tasks called t1, t2, and t3. The actor Task De-
signer represent the role who creates, instantiates and configures the tasks. In Figure
5, the call (1) is used to create an instance of the task t1. The calls (2), (3), and (4)
are used to set the timing parameters of this task. The calls (5) and (6) are used to
set the resource requirements of t1. Similarly, the calls (7) and (8), and (9) and (10)
symbolize the creation and definition of the tasks t2 and t3. For brevity the details
are not shown. The calls (11), (12), and (13) are used to illustrate possible definitions
of dependencies between tasks. An interested reader should refer to the FSF website
(previously called LFOS 1) for the details.

Designing Reusable and Run-Time Evolvable Scheduling Software 353

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

5.2.3 Instantiation of the Scheduler

This part illustrates how a scheduler can be created at run-time based on the tasks and
resources defined in the previous sections. The actor Scheduler Designer represents
the role who creates, instantiates and configures the scheduler. In Figure 6, the call
(1) symbolizes the initial creation operation of the necessary objects. The call (2) ini-
tializes the scheduler with the previously defined tasks. The call (3) is responsible for
setting the resource tree as presented in Section 5.2.1. The calls (4) to (10) symbolize
how the important parameters of the schedulers are set. Where necessary, the com-
ponent scheduler delegates the calls to the responsible components. Finally, the call
(11) starts the scheduling process. This call sets the parameters of the solver, instan-
tiates it with the given type and starts the algorithm of the solver. The solver returns
a schedule, which can be in turn utilized to execute the tasks accordingly. Eventually,
the obtained schedule can be plotted. The call (12) represents such an action.

6 Case Studies

In Section 2, design and implementation of a scheduler framework which has a high-
degree of reusability and run-time evolvability are defined as the two key research
objectives. To obtain these quality attributes, a common practice today is to design an
application framework. As a design method, we have adopted the method of deriving
the key abstractions of the framework from the corresponding theories [4]. In ap-
plication frameworks, to provide a high-degree of reusability in a given domain, the
framework library must be expressive enough to implement the well-known examples
of that domain. To this aim, to demonstrate reusability of FSF, this section presents
a set of canonical examples from the scheduling domain which are instantiated from
the framework. To demonstrate the quality attribute run-time evolvability, each ex-
ample is extended with a set of evolution scenarios. A more detailed evaluation of
FSF is given in Section 7.

6.1 Rate Monotonic Scheduling (RMS)

Rate Monotonic Scheduling (RMS) is a scheduling method deployed in real-time op-
erating systems. Although in real-time systems tasks can be defined both as periodic
and aperiodic tasks, in RMS only periodic tasks are assumed. The priority values of
the instances of the tasks are fixed and determined with respect to inter-arrival time
(period) of instances. The shorter period a task has, the more privileged it becomes.
Unlike aperiodic tasks, the periodic ones have hard deadline requirements and these
are equal to the beginning of the next request of the task. The scheduling process
is preemptive. As a consequence, a task can never be in a waiting state for a less
privileged task [32].

1 https://github.com/gorhan/LFOS/tree/master/LFOS

354 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

6.1.1 Initial Requirement

Assume that the following RMS is desired, which is expressed using the notation 1
which is presented in Section 4:

1|pmtn,r j|∑
j

w jL j. (2)

In fact, an RMS is a “a fixed-priority online scheduling problem for scheduling
independent, preemptable, periodic tasks on a single processing unit aiming at mini-
mizing the total weighted lateness objective”.

6.1.2 Implementation of the Initial Requirement

We assume that our taskset consists of four tasks, and a single resource named cpu.
We specify the end of the scheduling window as the completion time of the latest
second instance of a task in the taskset2.

As for the required parameters, we have generated the timing attributes of the
tasks randomly; the values are shown in Table 2.

Tasks Release Execution Period Priorities
Times Times

τ1 r(τ1 ,0) = 0 c(τ1,cpu) = 7 pτ1 = 29 ?

τ2 r(τ2 ,0) = 3 c(τ2,cpu) = 3 pτ2 = 28 ??

τ3 r(τ3 ,0) = 2 c(τ3,cpu) = 2 pτ3 = 22 ????

τ4 r(τ4 ,0) = 1 c(τ4,cpu) = 4 pτ4 = 25 ???

Table 2: The randomly generated values of the timing attributes for the taskset. The
number of stars in the column priority corresponds to the relative importance of the
corresponding task in the taskset.

Based on this initial requirement, a scheduler is instantiated and executed. The
result is displayed in Figure 7. Since τ4 is more privileged than τ1, the resource is
reserved to τ4 at t = 1. Again for the same reason, τ3 and τ2 take the permission of
utilization of the resource cpu at t = 2 and t = 31, respectively.

6.1.3 Evolution of the requirement: The platform is extended with an additional
CPU

To demonstrate run-time evolvability of the scheduler, we assume the following change
in the requirements: The system is migrated to a new platform where 2 CPU’s are uti-
lized. Each CPU has the same characteristics as the initial one.

2 An interested reader can refer to our repository: https://github.com/gorhan/LFOS/blob/
master/Tests/RMS.py

Designing Reusable and Run-Time Evolvable Scheduling Software 355

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

Fig. 7: A graphical output of the example RMS instantiated with the initial require-
ments.

Fig. 8: A graphical output of the example RMS according to the new requirements.

The evolved requirement can be defined as follows:

P2|pmtn,r j|∑
j

w jL j. (3)

Since both resources are assumed to be identical, the execution times of the tasks
do not change.

6.1.4 Implementation of the new requirement

We will now extend the implementation of the previously instantiated scheduler at
run-time in 3 steps: (i) creating an additional resource; (ii) setting the resource prop-
erties, which are equal to the ones of the first resource; and (iii) introducing this new
resource instance to the system.

After run-time evolution, a new scheduler is configured. The output of it is shown
in Figure 8. Since there exists no available resource and the task τ4 is ready to execute,
the scheduler preempts the task τ1 at 1. Due to the additional resource, the second
instances of the tasks have completed their executions in 4 units of time earlier than
the initial case.

The output of the evolved implementation is shown in Figure 8. Since there exists
no available resource and the task τ4 is ready to execute, the scheduler preempts the
task τ1 at 1. Due to the additional resource, the second instances of the tasks have
completed their executions four units of time earlier than the initial case.

6.2 Multiple Resource Scheduling (MRS)

This example is defined to demonstrate the implementation of a complex scheduling
problem involving multiple tasks and resources.

356 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

6.2.1 Initial Requirement

Assume that there are 2 tasks and 2 resources each with different characteristics.
There are periodic and aperiodic tasks, which are referred to as system-level and
application-level tasks, respectively. A system-level task has a higher priority than an
application-level task. Unlike an application-level task, a system-level task cannot be
suspended. It is also assumed that an application-level task requires a system-level
task to complete. Therefore, aperiodic tasks depend on periodic tasks. The resources
in this example are classified as active and passive resources and named as process-
ing unit and memory, respectively. The active resources can process the tasks with
different speeds by adjusting the exerted power. This is not possible with the passive
resource. The scheduling process is defined as offline. It is also assumed that some
tasks are preemptable. As a design choice, the tasks are prioritized with respect to
their release times. Therefore, the scheduling policy is defined as Earliest-Release-
Time-First.

Instances of a task are re-prioritized after the completion of each instance for the
following 2 reasons: (1) the release time of each instance can be different; and (2) an
instance with earliest release time compared to the other instances may not have the
same release time characteristics in the next scheduling window with respect to its
period.

Finally, the overall objective of the scheduler is defined as minimizing the con-
sumed power on the resources while executing the tasks.

The requirement is expressed using Definition 1:

Q2|r j,d j, prec, pmtn,M j,s jk,batch|∑
i, j

PW (i, j), (4)

where PW (i, j) is the total exerted power of the resource i on running the task j.

6.2.2 Implementation of the Initial Requirement

The framework is configured in the following way3: There are two instances for each
task; τ(1,1) and τ(1,2), and τ(2,1) and τ(2,2) are defined as instances of periodic tasks
and aperiodic tasks, respectively. There are also two instances for each resource; cpu1
and cpu2, memory1 and memory2 are instances of active resources with single-unit
capacities, and as passive resources with 512-unit capacities, respectively. In addition,
in terms of power consumption, the active resources have two modes, half-scale (0.5)
and full-scale (1.0). If a resource is running at half-scale mode, the execution time of
any task on that resource becomes two times longer than its actual execution time.

In Table 3, the timing attributes of instances of tasks are shown. Since the at-
tributes used for periods are redundant for aperiodic tasks they are shown as NA (not
applicable).

Data dependency between tasks is shown in Figure 9. The numbers above the
edges represents the sequence dependent setup times explained in [38]. The direction

3 An interested reader can refer to our repository: https://github.com/gorhan/LFOS/blob/
master/Tests/MRSP.py

Designing Reusable and Run-Time Evolvable Scheduling Software 357

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

Tasks Release Times Execution Times Deadlines Period
τ(1,1) r(τ(1,1),0) = 0 c(τ(1,1),cpu1) = c(τ(1,1),cpu2) = 3 d(τ(1,1),0) = 6 pτ(1,1) = 6
τ(1,2) r(τ(1,2),0) = 2 c(τ(1,2),cpu1) = c(τ(1,2),cpu2) = 1 d(τ(1,2),0) = 4 pτ(1,2) = 4
τ(2,1) r(τ(2,1),0) = 3 c(τ(2,1),cpu1) = c(τ(2,1),cpu2) = 2 d(τ(2,1),0) = 14 pτ(2,1) = NA
τ(2,2) r(τ(2,2),0) = 8 c(τ(2,2),cpu1) = c(τ(2,2),cpu2) = 1 d(τ(2,2),0) = 11 pτ(2,2) = NA

Table 3: The timing attributes of tasks. NA: Not Applicable

Task_1_1

Task_2_1

Task_1_2

Task_2_2

3 2

1 2

Fig. 9: The data dependency graph.

of an arrow indicates the dependency of tasks. The target tasks τ(1,1) and τ(1,2) depend
on the source tasks τ(2,1) and τ(2,2). An instance of a task is eligible to execute at any
time after at least one of the dependency relations is satisfied. We term this type of
dependency as OR-dependency.

In addition, the instances of tasks τ(1,1) and τ(2,1) are instantiated with 650- and
140-unit capacities on the passive resources, respectively.

With these settings, the framework is instantiated and executed. The result is
shown in Figure 10. As can be seen from the figure, to lower the power consumption,
the scheduler utilizes the resource cpu2 at half-scale mode. Due to the dependency
relation defined for τ(2,1), this task cannot start immediately after its release time, and
consequently its completion is deferred. The resource cpu1, therefore, has to operate
at a full-scale mode at t = [9,11) so that the tasks τ(2,2) and τ(1,2) can be completed
within their deadlines.

6.2.3 Run-time evolution of the requirement: change of the objective due to
increasing task demand

To evaluate the run-time evolvability of the example, we introduce the following new
requirement. Assume that the number of instances of tasks is becoming more than the
underlying system can support. In this case, the overall objective of the scheduling
process is changed to minimize the total weighted lateness. The justification of this
change is to avoid the deadline misses. Since the evolution is not correlated with the
scheduling parameters but the objective, the specification of the evolved scheduler is
expressed as follows:

Q2|r j,d j, prec, pmtn,M j,s jk,batch|∑
j

w j.L j. (5)

358 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

Fig. 10: A schedule aimed to minimize power consumption of the resources.

Fig. 11: A schedule of the example which aims at minimizing total weighted lateness.

To instantiate the scheduler at run-time with respect to the new requirements, we
execute the following calls: (i) altering the objective to minimizing the total weighted
lateness; and (ii) calling the method schedule on Scheduler.

6.2.4 Implementation of the new requirement

To realize the new requirement, the following modifications are carried out at run-
time: (i) before each scheduling process, a conditional statement is added to check
the number of instances. (ii) if there exist more than five instances of tasks, the overall
objective is set to the total weighted lateness. After the re-instantiation, the schedule
is computed. The result is shown in Figure 11. The scheduler chooses to run the
resources at a full-scale mode and complete the tasks as soon as possible to realize
the desired objective.

Designing Reusable and Run-Time Evolvable Scheduling Software 359

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

6.3 Job-shop Scheduling (JS)

In Job-shop scheduling, the resources are identical. They show differences based on
the dependency relation between tasks and the machine eligibility of them. In JS,
each job has a predetermined path of execution and it is not necessary for a job to
visit each resource during its execution [6]. In addition, the execution orders of jobs
on resources may be different. For instance, the job k1 and k2 may have the execution
orders (3,2,4,1) and (1,4,2,3) on the resources. The eligible resources for the third
activities of the jobs are denoted by µ(3,k1) = 4 and µ(3,k2) = 2.

In the following sub-section, we present a specific JS example.

6.3.1 Initial Requirements

Assume that there are three tasks with 3, 4 and 3 instances. The machine environment
consists of four resources with single-unit capacity.

From the perspective of scheduling process, the priority is determined with re-
spect to the execution duration of a job, which is constant. Due to this condition, the
priorities are assigned to jobs once and remains constant unless it is modified. The
scheduling algorithm is chosen to be non-preemptive. The objective is to minimize
the makespan.

The initial requirement is expressed as follows:

J4|M j, prec|Cmax. (6)

6.3.2 Implementation of the Initial Requirement

In our implementation, jobs and machines are modeled as instances of tasks and
resources, respectively, We have adopted the parameters as defined in Example 7.1.1
in [38]4. Each task is defined aperiodic and non-preemptable. To oblige each instance
of a task to execute on a specific resource, the machine eligibility constraint is defined.
In addition, we define the dependency relation among instances of tasks to specify
the execution path of a task on different resources. Since the tasks have no release
time or deadline constraints, a task may start to execute if the dependency constraint
is satisfied. The eligible resources and execution times of the instances of tasks are
given in Table 4.

The execution paths of jobs as defined in JS are expressed as dependency relations
of tasks. These are shown in Figure 12.

The framework is instantiated and executed. The obtained schedule can be seen
in Figure 13. The tasks τ(4,2) and τ(3,1) are ready to execute at time 18 on the resource
Resource_03. Since the task with the longer execution time (τ(4,2)) has a higher
priority than the others, it executes first.

4 The details about the implementation can be found in our repository https://github.com/
gorhan/LFOS/blob/master/Tests/JSP.py

360 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

Run-time µ(i, j) c(i, j)Tasks
τ(1,1) 1 10
τ(2,1) 2 8
τ(3,1) 3 4
τ(1,2) 2 8
τ(2,2) 1 3
τ(3,2) 4 5
τ(4,2) 3 6
τ(1,3) 1 4
τ(2,3) 2 7
τ(3,3) 4 3

Table 4: The execution times of the instances of tasks.

τ (1,1)

τ (1,2)

τ (1,3)

τ (2,1)

τ (2,2)

τ (2,3)

τ (3,1)

τ (3,2)

τ (3,3)

τ (4,2)

Fig. 12: The dependency graph of tasks.

Fig. 13: An optimized schedule by minimizing the makespan.

Designing Reusable and Run-Time Evolvable Scheduling Software 361

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

Fig. 14: A graphical representation of the schedule of the evolved JS example.

6.3.3 Run-time evolution of the requirement: adding release time constraint

As a run-time evolution of the previous example, now assume that some of the tasks
cannot execute immediately after requesting a schedule. The new problem definition
is accordingly expressed as follows:

J4|M j, prec,r j|Cmax. (7)

6.3.4 Implementation of the new requirement

To implement this evolution request, a new release time for the targeted instances of
tasks must be set. To this aim, we define the release times of the tasks τ(1,1) and τ(2,3)
as 2 and 21, respectively. To this aim, the corresponding method to set the release
time of each instance of tasks is called.

As shown in Figure 14, due to the restriction on release times, the completion
time of the latest task τ(3,3) is delayed to 31.

6.4 Flow-shop Scheduling (FS)

Flow-shop Scheduling is commonly utilized in industrial production. It is a kind of
shop problem where jobs have the same execution order on each machine, ∀i, j µ(i, j) =
i. Therefore, the execution path of jobs in the first machine have to be preserved
on other resources, which is defined as permutation in [38]. Since the process of
activities of a job in assembly line should not be altered, the scheduling algorithm is
not preemptive. Furthermore, all the queues are postulated to operate under the policy
of First-In-First-Out (FIFO).

362 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

j1 j2 j3 j4 j5
τ(1, j) 5 5 3 6 3
τ(2, j) 4 4 2 4 4
τ(3, j) 4 4 3 4 1
τ(4, j) 3 6 3 2 5

Table 5: The execution times for the tasks.

6.4.1 Initial Requirements

In our framework, jobs and machines are represented as instances of tasks and re-
sources, respectively. Each instance of a task is assigned to exactly one resource.
This is specified as machine eligibility. Since each instance of a task has to execute
on each instance of a resource once, tasks are defined as aperiodic. There exist de-
pendency relations among tasks to ensure the order of executions on each instance of
a resource. According to the requirements:

– The tasks are not preemptable.
– The resources are active and have single-unit capacities.
– The speed of resources are assumed to be constant.
– The scheduling process is defined as offline.
– The scheduling policy is determined as FIFO.
– The priority assignment is defined as dynamic.
– The overall objective is chosen as minimizing the makespan.

This requirement can be represented as follows:

F4|prec, prmu,M j|Cmax. (8)

6.4.2 Implementation of the Initial Requirement

The example 6.1.1 in the book of Pinedo [38] is adopted in the implementation of our
FJ5. There are five instances of tasks and four instances of resources. Since each job
is supposed to execute on each resource, the taskset consists of 20 instances (5 jobs
x 4 resources). The execution times of the tasks are shown in Table 5. The columns
correspond to the jobs. The row τ(i, j) correspond the execution time of the job j on
the resource i.

The dependency relations of the tasks are shown in Figure 15. Here, the tasks
(nodes) with two incoming edges have to wait until both dependency constraints are
satisfied. We call this constraint as AND-dependency.

The example is implemented and executed. The obtained schedule is given in Fig-
ure 16. Since the objective is minimizing the makespan, it is not required to schedule
the tasks as soon as possible. For this reason, some instances of tasks starts later than
its earliest start time., such as τ(2,3) and τ(3,3). As it can be seen in the figure, the
makespan of the schedule is 34.

5 The implementation using our design environment and details can be found in our repository https:
//github.com/gorhan/LFOS/blob/master/Tests/FSP.py

Designing Reusable and Run-Time Evolvable Scheduling Software 363

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

τ (1,1) τ (1,2) τ (1,4) τ (1,5)τ (1,3)

τ (2,1) τ (2,2) τ (2,4) τ (2,5)τ (2,3)

τ (3,1) τ (3,2) τ (3,4) τ (3,5)τ (3,3)

τ (4,1) τ (4,2) τ (4,4) τ (4,5)τ (4,3)

Fig. 15: The dependency graph of the flow-shop scheduling example.

Fig. 16: A graphical representation of the schedule.

6.4.3 Evolution of the requirement: relaxation of dependencies

Assume that dependencies among the tasks have to be relaxed at run-time by remov-
ing the dependencies shown as vertical edges in Figure 15. Since there is no change
in general scheduling attributes, the problem definition given in Equation 8 is still
valid.

364 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

Fig. 17: A graphical representation of the output of the evolved FS example.

6.4.4 Implementation of the new requirement

There are two ways to implement the required evolution: Data dependency relations
of each task are abandoned and the new ones are defined, or the undesired dependen-
cies (shown as vertical edges) for each task is removed.

This evolution requirement is instantiated at run-time and executed. The resulting
output is shown in Figure 17.

6.5 Open-shop Scheduling (OS)

In open-shop scheduling, like the previous shop examples, a job is dedicated to one
machine. On the other hand, the dependencies among jobs are relaxed. A job can be
freely allocated the corresponding machine when it is available. However, any two
activities of a job cannot execute in parallel and therefore they cannot be active at the
same time; an activity should finish its execution before another activity of the same
job starts to execute. Like all shop problems, the jobs are not preemptable.

6.5.1 Initial Requirements

Assume that there are five jobs and three active resources. Each job is supposed to
execute on each resource. Therefore, there exist 15 instances (5 jobs x 3 resources)
according to our model. The details of the example are adopted from Example 8.4.1
in the book of Pinedo [38]6 and modified according to our model.

6 The implementation using our design environment and details can be found in our repository https:
//github.com/gorhan/LFOS/blob/master/Tests/OSP.py

Designing Reusable and Run-Time Evolvable Scheduling Software 365

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

j1 j2 j3 j4 j5
τ(1, j) 1 2 2 2 3
τ(2, j) 3 1 2 2 1
τ(3, j) 2 1 1 2 1

r j 1 1 3 3 3
d j 11 9 8 9 11

Table 6: The execution times, release times and deadlines for the taskset.

Fig. 18: A graphical representation of a schedule of the OS example.

The adapted problem definition of this example is as follows:

O3|r j,d j,M j|Lmax. (9)

6.5.2 Implementation of the Initial Requirement

Similar to other shop examples, also in this example, jobs and machines are defined
as tasks and resources, respectively. Each instance of a task is assigned to exactly one
resource using the machine eligibility specification. Instances of tasks in the same
subset as mutually-exclusive.

The execution times of the tasks on each resource, their release times and dead-
lines are shown in Table 6.

This example is instantiated and executed. The resulting schedule is displayed in
Figure 18. There exists only one solution to this scheduling problem. The duration
between release times and deadlines of the job task j3 and j4 is equal to their execu-
tion times. Therefore, there is no any other scheduling possibility. Since the execution
time of the task τ(1,5) is 3 and its deadline is 11, it is supposed to be scheduled imme-
diately after the task τ(1,4). Due to the non-preemptable tasks, although the task τ(1,1)
has the highest priority among the tasks, the task τ(1,2) has to be scheduled at the time
when its release time starts.

366 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

Fig. 19: A graphical representation of the output of the evolved example.

6.5.3 Evolution of the requirement: preemptable tasks

As an evolution step, now assume that the tasks are defined to be preemptable. This
new requirement can be expressed as:

O3|r j,d j,M j, pmtn|Lmax. (10)

6.5.4 Implementation of the new requirement

To implement this evolution, the taskset must be traversed and the tasks must be re-
specified as preemptable. The previously defined schedule is modified at run-time
accordingly and executed. The output schedule is shown in Figure 19. Here, the task
τ(1,1) is able to start immediately after its release time as the task τ(1,2) is preempted
by the task τ(1,2).

7 Evaluation and Conclusions

In this section, the framework is evaluated against the objectives described in Section
2.

7.1 Our Assessment Method

The contribution of this paper is evaluated against the two required quality attributes
reusability and run-time evolvability.

From the perspective of reusability, it is stated that to create a particular schedul-
ing system, the code written from scratch must be much less than the code of the li-
brary that is reused. This definition refers to Lines-of-Code (LoC) metric [16]. There

Designing Reusable and Run-Time Evolvable Scheduling Software 367

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

is much debate on the preciseness of the metric, because it may not accurately express
the effort spent. The metric may be influenced from many factors such as the charac-
teristics of the adopted programming language, the formatting styles used in coding
etc. Therefore, the validity of LoC metric in a particular measurement context must
be considered carefully. In addition, the definition of reusability within the context
of application frameworks implies that the framework must be expressive enough to
instantiate a large category of implementations in the domain of the framework.

Run-time evolvability is defined as an ease of modification of an existing schedul-
ing software with respect to a new meaningful set of user requirements during the
operational phase of the software. This implies that all relevant parameters of a sys-
tem must be set by invoking operations on the corresponding objects. To validate
this quality attribute, one can define evolution scenarios for each possible parameter
change. One disadvantage of this evaluation is that there may be too many possible
evolution scenarios. Nevertheless, within the domain of scheduling, the number of
relevant attributes is limited. For example, in Section 2, run-time evolution support is
required for five cases.

α1 α2
Q F O J 1 M

β

r j MRS OS RMS MRS, OS
prec MRS FS JS MRS, FS, JS
pmtn MRS OS RMS MRS, OS
d j = d MRS OS MRS, OS
M j MRS OS JS MRS, JS, OS
s jk MRS MRS
batch MRS MRS
prmu FS FS

Table 7: Domain coverage of examples used. Abbreviations represent the scheduling
examples referred to in this paper.

7.1.1 Reusability of the Framework

To evaluate the expressivity, in Section 6, five canonical examples from the schedul-
ing domain are presented.

It is argued that the scheduling domain can be represented using the Table 77.
The cells refer to the abbreviations of the example schedulers. The parameters in the
rows of the table corresponds to the scheduling characteristics and are denoted by β ;
whereas the columns of the table are grouped into two categories, namely the machine
identifier and the number of machines which are denoted by α1 and α2, respectively.

7 http://www2.informatik.uni-osnabrueck.de/knust/class

368 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

Within these categories, the parameters Q, F, O, J, 1, M are explained in detail in
Section 4.1. As it can be seen, in each column and row from top to bottom and left
to right, respectively, at least one example resides. This illustrates that the examples
cover at least one case of the parameters in the scheduling domain.

As previously shown in Figure 2, the framework can be divided into three subsys-
tems: Resources, Tasks and Scheduler. As for implementation, Python and C/C++ are
used. The third-party software that is adopted in the architecture are Numberjack [21],
SCIP [19], MiniSat [45], MipWrapper [21], Mistral [15], Mistral2 [21], SatWrapper
[21], Toulbar2 [12] and Walksat [41]. To implement the supporting functions, we
have integrated the following third-party tools: Clafer [5], Alloy [27], Chocosolver
[39] and MatplotLib [26].

The framework library including third-party software contains 18071 and 927904
LoC written in Python and C/C++ programming languages, respectively. The LOC
of the supporting software is not included in this count.

RMS MRS FS JS OS
Additional LoC (Python) 67 94 58 67 57

Table 8: The LoC for each example in Section 6.

In Table 8, the columns refer to the examples presented in this paper. The row
indicates the LoC of the examples.

The LOC metric is not very precise and not all the code of the library is used
in every example. Nevertheless, the amount of reuse of the library code is so much
higher than the metrics shown in the row of Table 8 that the impreciseness in this
context is considered negligible. Therefore, it is assumed the framework satisfies the
reusability requirement.

7.1.2 Run-time Evolvability of the Framework

Requirement Scenario Example
A Adding new resource RMS
B Changing the objective MRS
C Adding different release times to the tasks JS
D Removing some dependency relations FS
E Setting the tasks preemptable OS

Table 9: The table that is used to evaluate run-time evolvability of the framework.

In Section 2, five cases for run-time evolvability are given. An evaluation of our
framework with respect to this objective is given in Table 9. Here, the capital letters

Designing Reusable and Run-Time Evolvable Scheduling Software 369

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

Parameter Symbol RMS MRS FS JS OS

BrE

Constraints ni
c 4067 738 13980 2818 545

Time for constraint definition (sec) t i
d 1.3961 0.46911 11.36172 5.1782 0.50092

Time for solver execution (sec) t i
s 268.93 107.41 22342.83 274.71 7.71

Overhead t i
o = t i

d/(t
i
d + t i

s) 0.0052 0.00435 0.00051 0.0185 0.06101

ArE

Constraints ne
c 4629 738 12322 2417 754

Time for constraint definition (sec) te
d 1.91886 0.5057 12.22426 4.92931 0.5021

Time for solver execution (sec) te
s 251.65 107.18 14955.39 167.76 11.76

Overhead te
o = te

d/(t
e
d + te

s) 0.00757 0.0047 0.00082 0.02854 0.04095

Table 10: The table which is used to evaluate the time performance overhead of FSF
with respect to a bare solver alternative.

in the first column correspond to the cases. The second column Scenario describes
briefly the evolution scenarios presented for each example in Section 6. The last col-
umn lists the abbreviations of each corresponding example. It is clear from the table
that these evolution scenarios can be realized at run-time. Therefore, it is assumed
that the framework satisfies the run-time evolvability requirement.

7.1.3 Evolution of the Time-Performance Overhead

As demonstrated in the previous two subsections, FSF provides a high-degree of
reusability and run-time evolvability. A legitimate question one may ask is what is
the cost of enhancing these quality attributes in terms of time performance? To an-
swer this question, the time performance of FSF is compared with bare solver-based
solutions. Consider Table 10. Here, two tables are integrated into one. The upper and
lower tables, which are named as BrE and ArE refer to the examples before and after
evolution scenarios, respectively. The columns Parameter and Symbol refer to the
relevant parameters for our evaluation. The columns RMS, MRS, FS, JS, and OS
represent the measured parameters of the examples presented in Section 6. The row
Constraints indicates the number of constraints generated; these are to be consid-
ered by the solver. Obviously, the number of constraints gives an indication about
the complexity of the problem and the required time-delay caused by the solver. The
actual time performance of the solver also depends on the nature of the constraints
and how they are related to each other. The parameter Time for constraint definition
refers to the time spent for the generation and transformation of constraints realized
by FSF. The parameter Time for solver execution refers to the time required by the
bare solver. In this case, it is assumed that no time is spent in the preparation of the
constraints since they are readily expressed in the specification language of the solver.
A ratio of these two parameters is defined as Overhead.

As can be seen from the table, Overhead varies between 0.00051 and 0.06101.
It is clear that the execution time caused by FSF is comparably much less than the
execution time of the solver adopted.

7.2 Conclusions

In this paper, reusability and run-time evolvability are defined as the two key require-
ments of an object-oriented framework aimed at creating scheduling software. To

370 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

this aim, a framework called FSF has been implemented. With the help of canonical
examples, it is shown that FSF satisfies the reusability requirement. The run-time
evolvability of the framework is demonstrated with a set of evolution scenarios. To
the best of our knowledge, FSF is the first framework that provides a scheduling
design framework with these quality attributes.

Acknowledgements This work has been supported by Aselsan A.Ş. generously.

References

1. Django project. http://www.djangoproject.com/
2. Ahmad, W., d. Groote, R., Hölzenspies, P.K.F., Stoelinga, M., v. d. Pol, J.: Resource-constrained

optimal scheduling of synchronous dataflow graphs via timed automata. In: 2014 14th International
Conference on Application of Concurrency to System Design, pp. 72–81 (2014)

3. Aksit, M.: Software Architectures and Component Technology. The Springer International Series in
Engineering and Computer Science. Springer Verlag (2002)

4. Aksit, M., Tekinerdogan, B., Marcelloni, F., Bergmans, L.: Deriving Object-Oriented Frameworks
from Domain Knowledge, pp. 169–198. John Wiley & Sons (1999)

5. Antkiewicz, M., Bąk, K., Murashkin, A., Olaechea, R., Liang, J., Czarnecki, K.: Clafer tools for
product line engineering. In: Software Product Line Conference. Tokyo, Japan (2013). Accepted for
publication.

6. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling: Applying Constraint Program-
ming to Scheduling Problems. Kluwer Academic, Springer (2001)

7. Becker, C., Scholl, A.: A survey on problems and methods in generalized assembly line balancing.
European Journal of Operational Research 168(3), 694 – 715 (2006). Balancing Assembly and Trans-
fer lines

8. Brucker, P.: Scheduling Algorithms, 5th edn. Springer-Verlag Berlin Heidelberg (2007)
9. Burns, A.: Scheduling hard real-time systems: a review. Software Engineering Journal 6(3), 116–128

(1991)
10. Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Scheduling Algorithms And Appli-

cations (Real-Time Systems Series). Springer US, Santa Clara, CA, USA (2011)
11. Chen, J.J., Kuo, T.W.: Multiprocessor energy-efficient scheduling for real-time tasks with different

power characteristics. In: 2005 International Conference on Parallel Processing (ICPP’05), pp. 13–20
(2005)

12. Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency
revisited. Artif. Intell. 174(7-8), 449–478 (2010)

13. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems. ACM
Comput. Surv. 43(4), 35:1–35:44 (2011)

14. Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Chapter 2 time constrained routing and
scheduling. In: Network Routing, Handbooks in Operations Research and Management Science,
vol. 8, pp. 35 – 139. Elsevier (1995)

15. Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete and Practical Technique for Solving
Linear Inequalities over Integers, pp. 233–247. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

16. Frakes, W., Terry, C.: Software reuse: Metrics and models. ACM Comput. Surv. 28(2), 415–435
(1996). DOI 10.1145/234528.234531

17. Frakes, W.B., Kang, K.: Software reuse research: Status and future. IEEE Trans. Softw. Eng. 31(7),
529–536 (2005)

18. Fromherz, M.P.: Constraint-based scheduling. In: American Control Conference, 2001. Proceedings
of the 2001, vol. 4, pp. 3231–3244. IEEE (2001)

19. Gamrath, G., Fischer, T., Gally, T., Gleixner, A.M., Hendel, G., Koch, T., Maher, S.J., Miltenberger,
M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shi-
nano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J.T., Witzig, J.: The scip optimization suite
3.2. Tech. Rep. 15-60, ZIB, Takustr.7, 14195 Berlin (2016)

Designing Reusable and Run-Time Evolvable Scheduling Software 371

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Güner Orhan et al.

20. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deterministic se-
quencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287 – 326 (1979). Discrete
Optimization II

21. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint Programming and Combinatorial Optimisation
in Numberjack, pp. 181–185. Springer Berlin Heidelberg (2010)

22. Heinz, S., Ku, W.Y., Beck, J.C.: Recent improvements using constraint integer programming for re-
source allocation and scheduling. In: International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems, pp. 12–27. Springer (2013)

23. Hochwald, B.M., Marzetta, T.L., Tarokh, V.: Multiple-antenna channel hardening and its implications
for rate feedback and scheduling. IEEE Transactions on Information Theory 50(9), 1893–1909 (2004)

24. Holenderski, M., Bril, R.J., Lukkien, J.J.: Parallel-task scheduling on multiple resources. In: 2012
24th Euromicro Conference on Real-Time Systems, pp. 233–244 (2012)

25. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Oper. Res. 55(3), 588–
602 (2007)

26. Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing In Science & Engineering 9(3),
90–95 (2007)

27. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press (2012)
28. Johnson, R.E., Foote, B.: Designing reusable classes. Journal of object-oriented programming 1(2),

22–35 (1988)
29. Kim, J.H., Legay, A., Traonouez, L.M., Acher, M., Kang, S.: A formal modeling and analysis frame-

work for software product line of preemptive real-time systems. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing, SAC ’16, pp. 1562–1565. ACM, New York, NY, USA
(2016)

30. Kolisch, R., Hartmann, S.: Heuristic Algorithms for the Resource-Constrained Project Scheduling
Problem: Classification and Computational Analysis, pp. 147–178. Springer US, Boston, MA (1999)

31. Linden, F.J.v.d., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

32. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environ-
ment. J. ACM 20(1), 46–61 (1973)

33. Matic, S., Goraczko, M., Liu, J., Lymberopoulos, D., Priyantha, B., Zhao, F.: Resource modeling and
scheduling for extensible embedded platforms. Tech. rep., MSR-TR-2006-176 (2006)

34. Mili, H., Mili, F., Mili, A.: Reusing software: issues and research directions. IEEE Transactions on
Software Engineering 21(6), 528–562 (1995)

35. Nikovski, D., Brand, M.: Decision-theoretic group elevator scheduling. In: ICAPS, vol. 3, pp. 9–13
(2003)

36. Orhan, G., Akşit, M., Rensink, A.: A formal product-line engineering approach for schedulers. In:
22nd International Conference on Emerging Trends and Technologies in Convergence Solutions, pp.
15–30. The Society for Design and Process Science (SDPS) (2017)

37. Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded operating systems.
SIGOPS Oper. Syst. Rev. 35(5), 89–102 (2001)

38. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer Publishing Company,
Incorporated (2008)

39. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA Rennes, LINA CNRS
UMR 6241, COSLING S.A.S. (2016). URL http://www.choco-solver.org

40. Saraf, A.P., Slater, G.L.: An efficient combinatorial optimization algorithm for optimal scheduling of
aircraft arrivals at congested airports. In: 2006 IEEE Aerospace Conference, pp. 11 pp.– (2006)

41. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: DIMACS
SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, pp. 521–
532 (1995)

42. Sha, L., Abdelzaher, T., årzén, K.E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M.,
Lehoczky, J., Mok, A.K.: Real time scheduling theory: A historical perspective. Real-Time Systems
28(2), 101–155 (2004)

43. Silberschatz, A., Galvin, P.B., Gagne, G., Silberschatz, A.: Operating system concepts, vol. 4.
Addison-Wesley Reading (1998)

44. Sommerville, I.: Software Engineering, 10th edn. Pearson (2015)
45. SÃűrensson, N., Een, N.: Minisat v1.13 - a sat solver with conflict-clause minimization. 2005. sat-

2005 poster. 1 perhaps under a generous notion of âĂIJpart-timeâĂİ, but still concurrently taking a
statistics course and leading a normal life. Tech. rep. (2002)

372 Güner Orhan, Mehmet Ak³it and Arend Rensink

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Designing Reusable and Run-Time Evolvable Scheduling Software

46. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand,
C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The
worst-case execution-time problem & overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst. 7(3), 36:1–36:53 (2008)

47. Zhao, W., Ramamritham, K., Stankovic, J.A.: Preemptive scheduling under time and resource con-
straints. IEEE Transactions on Computers C-36(8), 949–960 (1987)

Designing Reusable and Run-Time Evolvable Scheduling Software 373

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

