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Abstract Multi Processor System on Chips are expected to exhibit increased
performance when extra memory chips exist close to their processing units.
Given an architecture of such a system, equipped with private fast memories
for each processor and a slower shared memory for all of them, we propose a
constraint programming model that is capable of scheduling program work-
flows annotated with data usage information. Our approach examines usage of
the data objects by individual tasks and arranges their positioning to certain
private memories or to the shared memory during the execution. The objec-
tive is to minimize the makespan of the workflow. Experiments on artificially
generated workflows show that values close to theoretical lower bounds can be
achieved for moderate problem sizes under reasonable execution time.

Keywords task scheduling · workflows · constraint programming

1 Introduction

Modern multicore embedded architecture provide significant processing power
that is difficult to harness. Simplified algorithms that have been used to sched-
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ule sequential programs can not easily support the complex interdependencies
between architecture components. The most used optimization goal is to min-
imize the total execution time. The problem is that each architecture charac-
teristics can have significant impact in the solution approach that should be
followed to create high quality solutions. To overcome this problem there are
approaches that create tool flows [2],[10] that start from a high level represen-
tation of a program and in the end generate an equivalent working program
that uses the available processing cores of the architecture. Most of these flows
have domain specific languages to represent architectures [11], providing infor-
mation about the architecture to the algorithms. In the context of the H2020
ARGO project [2], our goal is to minimize the total execution time of the worst
case execution (WCET) [14], i.e. when the program fails to efficiently utilize
the architecture components and more than one processors antagonize to use
shared resources. This is a special case of the problem that is very important
in hard real time applications, like industrial image processing, avionics, au-
tonomous driving, safe critical control to guarantee that a program will finish
its execution in a given time interval. The problem is analogous to the multi-
mode resource-constrained project scheduling problem where the execution
time of each task is not fixed. To make the problem even more difficult the ex-
ecution time of each task has a cyclic dependency with the assignment of tasks
to processing cores, the sequencing of tasks in each core and the assignment
of variables to different memory resources.

The input program is represented by a Directed Acyclic Graph (DAG) with
annotations on each node regarding its usage on data objects.The classic DAG
scheduling problem (tasks with precedences but no data objects or memory
mapping requirements) is known to be NP-complete [4], and it is very hard
to be solved efficiently, and it has attracted much attention. Many algorithms
have been proposed in order to address the problem [9]. Heuristics [1], evo-
lutionary algorithms [6], mathematical programming approaches [3], [13] and
constraint programming [5] approaches are common categories that most of
the published methods fall into. In particular, due to their low complexity
and good efficiency, heuristics seem to dominate the field. Nevertheless, other
more computationally expensive methods achieve in general better results.
Moreover, the case of hybridizations among the previously mentioned meth-
ods seems to be another promising approach. The inclusion of data objects
and memory hierarchies to the DAG scheduling problem moves it closer to the
problem as it is manifested in actual multicore platforms. Two major types of
private memories used are either cache or scratchpad. The difference is that
in the first case the cache memory can not be explicitly programmed while
on the second case the programmer has the ability to issue commands that
explicitly load and unload data objects in and out of the scratchpad memory
when needed. Several researchers have worked with the both types of systems.
For MPSoCs with caches relevant research can be found at [7] while for MP-
SoCs with scratchpad some relevant work is [12], [8]. In this work, a multi core
architecture with scratchpad memories is assumed. Each processor has private
access to a small fast memory and they all share a much slower larger memory.
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The rest of this paper is organized as follows. The next section presents the
problem description. Section 3 describes the constraint programming model
that we developed in order to address the problem. Next, section 4 presents
results of our model to test problems of various sizes. Finally, section 5 com-
pletes the paper with conclusions and future work.

2 Problem description

The aim of this work is to propose an approach that efficiently executes pro-
grams consisting of several interdependent tasks in systems with multiple ex-
ecution units. The internal structure of each program is captured by a DAG
where each node is a task and each edge from task A to task B enforces the
completion of task A before the start of execution of task B. Such programs
are commonly referred to as workflows. In our case, for each task two pieces
of information are known: i) the execution time of each task when scheduled
on each processor and ii) the set of data objects that each task uses (creates,
reads or writes) alongside with the frequency of these actions and the size of
each data object.

The computer system that will execute the workflows is assumed to be a
simplification of an actual MPSoC. Each processor owns a private memory and
the execution time of each task might vary among processors since processors
are heterogeneous. Furthermore, a shared memory exists and all processors
can access it, although at a much lower speed than their private memories.
Memory sizes and relative speeds for shared and private memories are con-
sidered to be known. Since tasks access data objects during their execution,
certain placements of data objects to private memories of processors that will
execute the appropriate tasks is expected to be beneficial. Nevertheless, pri-
vate memories are small and they cannot possibly accommodate all relevant
data objects. Therefore, a scarce resource planning problem emerges.

Several constraints have to be satisfied in order to have a solution. Some
obvious ones are the following: each task should be executed by one and only
one processor, no overlap of task execution at the same processor should exist
and order of execution as imposed by the problems’ DAG should be respected.
Furthermore, each data object should exist either in a scratchpad memory or
in the shared memory and scratchpad capacities should be respected at all
times. Among solutions that satisfy all constraints the one with the lowest
makespan should be selected. A more detailed description of the model’s vari-
ables, constraints and objective function exists in section 3.

2.1 Input data

Problem input data records the execution time of each task on each processor
provided that all data objects that are accessed by the task are located at
the shared memory and none of them at private memories. If a data object
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that is accessed by a task is located at the private memory of the processor
that will execute the task, then the task will execute faster. The time saved
is computed by multiplying the number of the data object accesses by an
appropriate gain factor. Both of these parameters are included in the input
data for each valid task and data object combination. Moreover, each problems’
input data contains information about the size of each data object, the capacity
of each processors’ private memory and the nodes and edges of the problems’
DAG.

An estimation of a lower bound for the makespan of a workflow can be
found by assuming that each task will be scheduled to the fastest processor
for this task and that all required data objects by the task will exist at the
private memory of this processor. The approach that will be presented in the
following paragraphs manages to produce schedules that have makespans close
to these theoretical and over optimistic lower bounds.

2.2 Graph generation

A simple graph generation algorithm is used in order to generate artificial
graphs. Tasks are assigned to levels and edges between tasks of adjacent levels
are randomly created so as the graph to have a single source and a single
sink node. Then, a number of data objects are created. Each data object is
assigned to tasks that either read or modify it according to the existing edges.
An example of such a graph is shown in Fig. 1.

Fig. 1 graph 10 2: Artificially generated graph, 10 tasks, 10 variables (* on variables indi-
cate modification by the task)

3 The Constraint Programming model

The Constraint Programming (CP) model that will be presented makes use
of interval, binary and sequence variables. An interval variable represents an
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interval of time during which something will occur. An interval variable might
be optional, meaning that it might not be materialized at the final solution.
On the other hand, a sequence variable defines the total order over a set of
interval variables and can be used in order to enforce a constraint like no
overlapping for the items of the sequence.

Variables: Several variables exist in our model which are listed bellow:

– Interval variables task iv[t] that define the start and finish time of each
task t.

– Optional interval variables task oiv[t][p] that define the start and finish
time of each task t at each processor p.

– Interval variables load iv[t] that define the start and finish time for loading
all data objects needed by task t.

– Interval variables store iv[t] that define the start and finish time for storing
all data objects that task t modifies.

– Binary variables load b[t][v] that assume value 1 if task t needs to load
data object v from the main memory or 0 otherwise.

– Binary variables store b[t][v] that assume value 1 if task t needs to store
data object v to the main memory or 0 otherwise.

– Interval variables z iv[v] that define the start and finish time that a data
object v exists at a scratchpad.

– Optional interval variables z oiv[v][p] that define the start and finish time
of a data object v at the scratchpad of processor p. For each data object v
there exists one more variable z oiv[v][|P + 1|] that defines the start and
finish time of v to the main memory.

– Sequence variables task sv[p] that for each processor p define all corre-
sponding optional interval variables taskp oiv[t][p]. These variables are
used in order to avoid simultaneous task execution at each processor.

The relation among interval variables task iv[t], load iv[t] and store iv[t]
for the same task t is graphically depicted in Fig. 2.

Fig. 2 Start and finish of interval variable task iv should be synchronized with interval
variables load iv and store iv respectively

Constraints: The constraints of the problem can be summarized as follows:

– c01: Each task has to be scheduled to exactly one processor.
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– c02: No two tasks should be executed simultaneously at the same processor.
– c03: Task dependencies as defined at the problems’ DAG should be re-

spected.
– c04: Each task should start at the time when the data objects it uses start

loading.
– c05: Each task should finish at the time that it finishes storing the data

objects it modified.
– c06: Constraint that sets the size of interval variable load iv[t].
– c07: Constraint that sets the size of interval variable store iv[t].
– c08: No more that one load or store are allowed at the same time.
– c09: Constraint that sets the size of interval variable task iv[t].
– c10: Each task should load a variable when it is needed.
– c11: Each task should store variables when it is needed.
– c12: Each data object should exist either at a scratchpad or at the main

memory.
– c13: Scratchpad capacities should not be exceeded.
– c14: Constraint that sets the start and end times of interval variables z iv[t].

Objective: The objective is to minimize the end time of the sink task at the
problems’ DAG.

3.1 Analysis of key constraints

Next, we present selected constraints that are key to the model. In the formulas
that follows, predicates that are directly related to the ones defined at IBM
ILOG CP solver are used. These are sizeOf , startOf , endOf and presenceOf .
The first three return the size, the start time and the end time of an interval
variable, while the last one returns 1 if an optional interval variable belongs
to the solution or 0 otherwise.

Moreover, the following data are expected to exist. Exec[t ][p] is the execu-
tion time of task t on processor p when all the data objects that task t accesses
are in the shared memory. VarsThatTaskUses[t ] and VarsThatTaskModifies[t ]
are the lists of data objects that task t uses or modifies in the program respec-
tively. Finally, StartAfter [t ] is a list of tasks that should start after task t due
to the dependencies between tasks as captured at the DAG of the problem.

Constraints c06: Each constraint of this set computes the time that a task
must spent in order to load all data objects that it cannot find locally or
might have been modified earlier by tasks running on other processors. The
time spent for loading each data object is equal to the estimated gain (r.gain)
of having the data object at the scratchpad that the task can access. Bi-
nary variable load b[t][r.var id] assumes value 1 when task t needs to load
data object identified by r.var id. Constraint c10 is responsible for setting
load b[t][r.var id] value correctly.
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sizeOf (load iv [t ]) =
∑

r∈VarR:
r .task id=t

load b[t ][r .var id ]∗r .gain ∀t ∈ 1..T (1)

Constraints c07: Like c06 constraints, each one of the c07 constraints com-
putes the time spent on storing data objects that a task modified and are
needed by other tasks.

sizeOf (store iv [t ]) =
∑

r∈VarR:
r .task id=t

store b[t ][r .var id ]∗r .gain ∀t ∈ 1..T (2)

Constraints c09: This set of constraints sets a lower bound for the size of each
task execution interval. Since the problem is of minimization for the last task
this put pressure on obtaining the lowest possible values for task sizes. The
constraint subtracts from the execution time of task t on processor p the time
that each data object saves when it is located at the scratchpad of processor
p. Moreover, sizes of possible loads and stores of data objects are added.

sizeOf (task iv [t ]) ≥
∑

p∈1..P

presenceOf (task oiv [t ][p])∗
(

Exec[t ][p]−
∑

r∈varR:
r .task id=t

presenceOf (z oiv [r .var id ][p]) ∗ r .gain ∗ r .var freq
)

+

sizeOf (load iv [t ]) + sizeOf (store iv [t ])

∀t ∈ 1..T (3)

Constraints c10: These constraints specify whether tasks should load data
objects from the main memory or not. For a task t1, that uses data object v
this occurs when another task t2 which executes at a different processor than
t1’s has modified the data object and no other task t3 (that executes after t2
and earlier than t1) running at the same processor as t1, uses the data object.
In other words, if no task t3 exists, that has already loaded a data object v to
the scratchpad of the processor that t1 will execute, then t1 has to load the
data object by itself.
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presenceOf (z oiv [v ][p]) ∧ presenceOf (task oiv [t1 ][p])∧
∑

p1∈1 ..P :
p1 6=p

presenceOf (task oiv [t2 ][p1 ]) = 1∧

startOf (task oiv [t1 ][p]) ≥ endOf (task iv [t2 ])∧
∑

t3∈1 ..T :
t3 6=t1∧t3 6=t2∧

v∈VarsThatTaskUses[t3 ]∧
t2 /∈StartAfter [t3 ]∧
t3 /∈StartAfter [t1 ]

(
presenceOf (task oiv [t3 ][p])∧

startOf (task oiv [t3 ][p]) ≥ endOf (task iv [t2 ])∧
startOf (task oiv [t1 ][p]) ≥ startOf (task oiv [t3 ][p])

)
= 0

=⇒ load b[t1 ][v ] = 1

∀(t1 ∈ 1..T, p ∈ 1..P, t2 ∈ 1..T, v ∈ VarsThatTaskUses[t1 ] :

v ∈ VarsThatTaskModifies[t2 ] ∧ t1 6= t2 ∧ t2 /∈ StartAfter [t1 ]) (4)

Constraints c11: These constraints are analogous to constraints c10. They
specify whether a task should store a data object to the main memory or not.
For a task t1, that modifies data object v this occurs when another task t2
which executes at a different processor than t1’s uses the data object and no
other task t3 (that executes after t1 and earlier than t2) running at the same
processor as t1, modifies the data object.

presenceOf (z oiv [v ][p]) ∧ presenceOf (task oiv [t1 ][p])∧
∑

p1∈1 ..P :
p1 6=p

presenceOf (task oiv [t2 ][p1 ]) = 1∧

startOf (task iv [t2 ]) ≥ endOf (task oiv [t1 ][p])∧
∑

t3∈1 ..T :
t3 6=t1∧t3 6=t2∧

v∈VarsThatTaskModifies[t3 ]∧
t1 /∈StartAfter [t3 ]∧
t3 /∈StartAfter [t2 ]

(
presenceOf (task oiv [t3 ][p])∧

startOf (task oiv [t3 ][p]) ≥ endOf (task oiv [t1 ][p])∧
startOf (task iv [t2 ]) ≥ startOf (task oiv [t3 ][p])

)
= 0

=⇒ store b[t1 ][v ] = 1

∀(t1 ∈ 1..T, p ∈ 1..P, t2 ∈ 1..T, v ∈ VarsThatTaskModifies[t1 ] :

v ∈ VarsThatTaskUses[t2 ] ∧ t1 6= t2 ∧ t2 /∈ StartAfter [t1 ]) (5)
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The full listing of the CP model, using OPL which is the modeling language
used in IBM ILOG’s Optimization Studio1, can be found at https://github.
com/chgogos/task_scheduling_patat2018.

4 Experiments

A number of experiments that test and validate our model were run. For
example, the results that are produced for the graph of Fig. 1 when scheduled
on two processors are shown below:

// solution with objective 3714

Task1 [0 - 474] scheduled at processor 1

Task2 [474 - 1188] scheduled at processor 1

Task3 [1188 - 1852] scheduled at processor 1

Task4 [1852 - 2307] scheduled at processor 1

Task5 [474 - 1149] scheduled at processor 2

Task6 [2307 - 2997] scheduled at processor 1

Task7 [1188 - 1915] scheduled at processor 2

Task8 [2447 - 3044] scheduled at processor 2

Task9 [1915 - 2447] scheduled at processor 2

Task10 [3044 - 3714] scheduled at processor 2

var: 1 is mapped to proc: 2 start=474 end=3044[size=25]

var: 2 is mapped to proc: 1 start=474 end=2307[size=25]

var: 3 is mapped to proc: 2 start=1915 end=2447[size=26]

var: 4 is mapped to proc: 2 start=2447 end=3044[size=21]

var: 5 is mapped to proc: 2 start=474 end=1915[size=21]

var: 6 is mapped to proc: 2 start=474 end=2447[size=21]

var: 7 is mapped to proc: 1 start=474 end=1188[size=22]

var: 8 is mapped to proc: 1 start=0 end=2307[size=24]

var: 9 is mapped to proc: 1 start=0 end=3714[size=21]

var: 10 is mapped to proc: 2 start=474 end=1188[size=22]

The results obtained over 16 problem instances (datasets) are summarized
in Table 1. The name of each dataset (T P) provides information about the
number of tasks (T) and the number of processors (P) employed. All experi-
ments were executed on an i7 7700K, 16GB RAM workstation running Win-
dows 10 Professional. The solver was IBM ILOG CP 12.8 and a time limit of
60 seconds was given for each run. Column LB refers to lower bounds obtained
by assuming scratchpads of infinite size. Likewise, upper bounds resulted as-
suming no scratchpads.

For the six problem instances that reached optimality, the average distance
from the initial lower bound, was 7.25%. For the rest ones, the average distance
from the lower bound was 7.62%. The proximity of these two values indicate
that even for the cases that did not reach optimality, the obtained solutions
might be very close to the optimal ones.

1 https://www.ibm.com/products/ilog-cplex-optimization-studio
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Table 1 Experimental results under time limit of 60 seconds, LB=Lower Bound,
UB=Upper Bound, MS=Makespan

Dataset LB UB MS MS % LB Optimal Time (sec)

10 2 3,575 4,240 3,714 3.89% Yes 7

10 4 2,161 2,610 2,325 7.59% Yes 1

10 8 1,880 2,190 2,102 11.81% Yes 3

15 2 4,721 5,570 4,871 3.18% Yes 20

15 4 2,883 3,570 3,135 8.74% Yes 15

15 8 2,608 2,960 2,824 8.28% Yes 43

20 2 6,177 7,270 6,356 2.90% No 60

20 4 3,392 4,130 3,662 7.96% No 60

20 8 2,677 3,400 3,060 14.31% No 60

30 2 8,564 10,230 9,100 6.26% No 60

30 4 4,961 5,930 5,330 7.44% No 60

30 8 3,628 4,080 3,759 3.61% No 60

50 2 14,064 16,790 14,761 4.96% No 60

50 4 6,942 8,440 7,662 10.37% No 60

50 8 3,960 4,810 4,365 10.23% No 60

50 16 3,761 4,290 4,067 8.14% No 60

5 Conclusions

Constraint Programming is a powerful technique. Increased computational
power alongside with highly capable solvers like IBM ILOG’s CP Optimizer
can nowadays solve combinatorial problems that may have been difficult or im-
possible to solve a few years ago. In this work, the problem of scheduling tasks
with dependencies and accessing data objects in shared and private memories
has been solved using a Constraint Programming formulation that gives high
quality results.
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