
Decomposition of University Course Timetabling

A Systematic Study of Subproblems and their Complexities

Britta Herres · Heinz Schmitz

Abstract Suppose we like to find non-overlapping periods for a set of events which
may have multiple teachers assigned, is that easy or hard in terms of complexity?
Or assume that only a single teacher is fixed per event, but we like to allocate
rooms and periods simultaneously. What if a single teacher and a room is already
given and we look for periods alone? And how do requests of teachers for specific
rooms or period conflicts of students change the complexities of these questions
from University Course Timetabling (UCT)?

We provide a complete hard/easy-list of all UCT subproblems derived from
a typical set of hard constraints. We obtain this list with a systematic study of
the fine structure of UCT in terms of embedded subproblems w.r.t. the order in
which rooms, periods and teachers are assigned to events. This kind of subproblems
appear in practice when some entities in a timetable are fixed while the assignments
of others are (re-)computed, and they also appear as necessary conditions for
the existence of feasible timetables. Moreover, we identify which of the seemingly
different subproblems are essentially the same computational tasks by reducing
them to the same bipartite assignment problem, and we discuss some variations
of constraints.

Keywords foundations of university course timetabling · complexity analysis ·
decomposition approach · bipartite assignment problems

1 Introduction

In University Course Timetabling (UCT) we usually try to allocate resources to
teaching events such that the resulting timetable can be implemented throughout
a teaching period without severe conflicts, or – even more – such that some notion
of a ‘good’ timetable is met (for an overview see e.g. [2, 17, 20, 22]). Due to the
many variations of this setting in different institutions there is a high diversity
within the family of UCT problems. On the other hand, there is also something
like a core set of constraints that appear in many scenarios and that determine the

Britta Herres · Heinz Schmitz
Hochschule Trier, Trier, Germany
E-mail: b.herres@hochschule-trier.de, h.schmitz@hochschule-trier.de

215

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

minimum complexity we have to face at least when it comes to computations, e.g.,
the constraint that rooms and teachers must not be assigned more than once in the
same period. These core constraints turn the general problem of allocating rooms,
periods and sometimes also teachers and students into a hard computational task
[4, 8].

We analyze in this paper the structure of UCT problems in terms of complexity
based on a typical set of hard constraints. We gain this structure by looking at
a natural notion of a subproblem where we consider the required entities (rooms,
periods, teachers) separately and distinguish the order in which they are assigned
to events. More precisely, we vary for each entity the cases whether this entity is
not considered at all, or if a feasible assignment for this entity is already given in
the input, or if a feasible assignment for this entity needs to be computed. We also
distinguish single and multiple teachers per event and if event choices of students
are included or not. This gives a multitude of 66 subproblems that are embedded
in this sense in the overall model, among them the opening questions from our
abstract.

The role of subproblems in practical applications can be seen at least in the
following ways. They can appear as building blocks in algorithms that go back
and forth between single assignments, e.g., fix an assignment of periods, then as-
sign teaching assistants if possible – if not, go back and assign (other) periods,
and so on. If some assignments are fixed, then a subproblem can also be under-
stood as a recomputation problem if parts of the basic data have changed, e.g., if
teachers meanwhile have other availabilites. Finally, we can think of subproblems
as consistency checks for the data provided since partial assignments constitute
necessary conditions that are reasonable to check before a costly computation for
the general problem is initiated. We think that it is fundamental to know which
of these subproblems are (as) hard (as the general problem), and which of them
are computationally easy. So our results also support approaches that are based
on attacking UCT timetabling by distinguishing easy and hard portions of the
problem – approaches that have been successful in the past, see e.g. [16,18].

On the technical side, we cope with the multitude of subproblems in two ways.
We derive from our set of hard constraints an order relation on subproblems, that is
consistent with reductions and that we use to propagate complexity results among
subproblems (Theorem 1). Secondly, we capture various subproblems at the same
time by bipartite assignment problems (BAPs) with additional constraints and
settle their complexity, inspired by [21, 24]. The use of bipartite (multi-)graphs
is a natural way to look at UCT problems, e.g., when computing feasible edge
colorings [1, 26] or bipartite matchings [7, 15, 25]. We demonstrate that certain
parameters of BAPs can make an important difference in terms of complexity,
for example if conflicting sets form a partition or not. This is in line with related
work where for particular settings also boundaries between hard/easy problem
versions were identified, e.g. for the class-teacher problem [11], with respect to
availability constraints [5, 8] or students course choice [4]. Among others we show
that a variation of the NP-complete problem known as Perfect Matching with
Node Partitions [21] can be solved efficienctly if we exploit the structure of the
edge set as it appears in our UCT context (Prop. 4). Moreover, algorithms for
BAPs can be used to solve all subproblems they capture – which in turn motivates
to look at these BAPs more closely in future work.

216 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

The complexity results for all subproblems are summarized in Tables 3, 4
and 5 which can serve as quick look-up tables for hardness results if at least
the constraints of our model (cf. Table 1) are present (e.g., the answers to the
first three questions from the abstract are hard, easy and hard). The effect of
adding constraints on teachers and rooms is given in Table 6. As a by-product
we introduce a concise tuple notation for (sub-)problems, which can help to ease
future discussions about the UCT problem family.

Notations. All variables like i, j, k, l, α, β, . . . are nonnegative integers and all con-
sidered sets like A,B,E, . . . are finite. With #A denote the cardinality of some
set A. Initial segments of N+ are denoted by [α] = {1, . . . , α}. Finite fami-
lies A of subsets over some universe A are written in calligraphic letters, as in
A = {Ai ⊆ A}i∈[α]. A partition A of a A is a set A = {Ai ⊆ A}i∈[α] of pairwise
disjoint and non-empty blocks Ai such that

⋃
i∈[α] Ai = A. Unless stated other-

wise, we consider undirected and simple bipartite graphs G = (A ∪ B,E) where
each edge ab ∈ E joins a vertex in A with a vertex in B. We call G = (A ∪B,E)
complete if E = A × B. For a bipartite graph G = (A ∪ B,E) we say M ⊆ E is
a matching of A if #M = #A and if for all distinct edges ab, a′b′ ∈ M it holds
that a 6= a′ and b 6= b′. We will frequently make use of the term assignment of A
where we only require that M has cardinality #A and that a 6= a′ for each pair of
distinct ab, a′b′ ∈ M . When we classify decision problems as easy or hard we do so
in terms of computational complexity and mean that a problem P belongs to the
class P or is shown to be NP-complete. With ≤p

m denote polynomial-time many-
one reductions between decision problems. For definitions of complexity classes
and reductions we refer to standard textbooks, e.g. [10].

Our Model. We assume in our UCT model that a set E of events is given and we
need to assign to each event e the following entities:

– one room re from a given set of rooms R, and
– one period pe from a set of non-overlapping periods P , and
– either a single teacher te or a set Te of teachers, from a given set T .

We distinguish the cases of a single teacher and a set of teachers in order to
discuss the implications later. In the latter case the number #Te of needed teachers
is specified per event and is at least one. There is also a set S of students given
who already have selected their events, which corresponds to a simple course model
where students choice is conducted on event level. An alternative way to look at
it is that students have already been scheduled to certain events in the input, i.e.,
the pre-timetabling setting of student sectioning. Note that this can also be used
to model curriculum-based timetabling where single students represent their whole
curriculum. We refrain here from including other forms of student sectioning in
the same model and refer to [6, 23] for complexity results for student sectioning.

A timetable is feasible for the given instance if assignments for all events can
be found such that specified constraints are satisfied. We only consider so-called
hard constraints required for a practical implementation of a timetable, e.g., two
different events must not be scheduled in the same room during the same period.
The list of constraints for our model is given in Table 1. Binary constraints refer
to all pairs of given events while unary constraints restrict possible assignments
for each single event. On one hand, this list is not minimal in the sense that, e.g.,

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 217

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

for some events a slight violation of room capacities might be acceptable or even
necessary in practice. On the other hand, due to the many variations of problems
from the UCT family it is clear that additional hard constraints could be needed
which add to the complexity of (sub-)problems, e.g., if one event has to follow
another event in the next period [7]. For our structural analysis we stick here to
this list of typical constraints that appear in many scenarios.

Table 1 Hard constraints considered in our model.

Constraint Type Comment

C1 room conflict binary a room can be scheduled at most once a period
C2 teacher conflict binary a teacher can be scheduled at most once a period
C3 student conflict binary a student can be scheduled at most once a period
C4 event availability unary an event must be scheduled at its available periods
C5 teacher ability unary a teacher must be capable to teach this event
C6 room capacity unary a room’s capacity must not be exceeded
C7 room availability unary a room must be scheduled at its avail. periods
C8 teacher availability unary a teacher must be scheduled at his avail. periods
C9 number of teachers unary each events has the number of needed teachers

Although completeness of assignments is implicitly understood, i.e., for all
events we have to assign exactly one room, one period and the needed teachers,
we list constraint C9 to emphasize that a single teacher is possibly not enough.
Also note that there is no constraint that refers to the event choice of students
explicitely, but it needs to be respected during period and room assignments (C3,
C6). All problems we consider are decision problems where we ask if a feasible
timetable exists w.r.t. the input data and the set of all active constraints (in the
next section we define subproblems for which it is reasonable to consider only a
subset of the constraints from Table 1). Observe that the corresponding optimiza-
tion problems asking to maximize the number of events in a feasible assignment
are not easier in term of complexity.

The rest of the paper is organized as follows. In the next section we define
all subproblems that result from our decomposition approach, introduce a concise
notation for them and explain their role in the UCT setting. Then we show in
Section 3 how subproblems are related in terms of polynomial-time many-one re-
ductions. In Section 4 we introduce bipartite assignment problems with additional
constraints and classify them as easy/hard. We use these general results to de-
termine the complexity of all our subproblems in Section 5. In Section 6 we look
more detailed at those of them that are sensitive to slight changes of constraints
concerning rooms and teachers. Finally, we conclude with notes on future work in
Section 7.

2 Decomposition and the Role of Subproblems

For each of the assignments of rooms, periods and teachers to events we distinguish
in subproblems the cases

(1) whether this entitiy is not considered at all, or

218 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

(2) if a feasible assignment for this entity is already given in the input, or
(3) if a feasible assignment for this entity needs to be computed.

Additionally, we like to vary the cases of single/multiple teachers and if event
choices of students are included or not.

Subproblem notations. In our tuple notation for subproblems we write ‘−’ if an
entitiy is not taken into account (1), we indicate a given assignments by italic
letters (2), and assignments that need to be computed by bold letters (3). The
first component refers to the assigment of rooms (−, r or r), the second to the
assignment of periods (−, p or p), the third to single or multiple teachers (−, t,
T , t or T), and the last component informs whether the given event choices of
students are included (− or S). As an example consider the problem (r,p, t, S)
where one teacher for each event is already fixed in a feasible way (i.e., teacher
abilities are respected, see C5) and event choices of students need to be respected.
Then the problem asks to find a feasible assignment of a room and a period for all
events, according to the remaining constraints and while leaving the given teacher
assignment unchanged. Note that ‘−’ in the last component would exclude checking
room capacities and period clashes for students (C6, C3).

Each component in this notation can be chosen independently giving 66 many
problems where at least one component is set in bold letters. There are 40 problems
which ask for the assignment of exactly one type of entity, and 26 multi-assignment
problems. When we use the term subproblem we mean a decision problem defined
by any of these 66 notations. All subproblems clearly belong to the class NP since
timetables are polynomially length-bounded w.r.t. input length and all constraints
can be verified in polynomial-time for a given timetable. For ease of notations we
write ‘∗’ in a component if the assignment might or might not be given in the
input, and talk about the respective subproblems simultaneously, e.g., (r, ∗, t, S)
refers to (r,−, t, S) and (r, p, t, S).

Active constraints. It needs to be clear from the problem notation what constraints
from Table 1 apply to each subproblem: The general policy is that we consider
all constraints that can be reasonably applied, i.e., all constraints for which all
required entities are present in the subproblem notation, either as part of the in-
put or part of the output. This constraint set can be easily determined for each
subproblem by Table 2 which relates constraints and required entities. If the as-
signment given in some row needs to be computed, then the constraints in the
second column are obligatory while the other constraints in that row apply if
the component in the column heading is also set. If more than one assignment
needs to be computed, then constraint sets are joined. As an example consider
(−,p, t, S). We need to consider constraints {C4} ∪ {C2, C8} ∪ {C3} from row
p since t and S are mentioned in the problem notation, additional we have con-
straints {C5, C9}∪{C2, C8}∪∅ from row t due to p and S. So together we have C2

(period clashes for the assigned teachers must be avoided), C3 (period clashes for
the given students must be avoided), C4 (events must be available at the period to
assign), C5 (teachers must have the ability to teach the events they are assigned
to), C8 (assigned teachers must be available at the assigned period) and C9 (the
required number of teachers have to be assigned).

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 219

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

Table 2 Constraint sets for subproblems. Each row represents the constraints which must
be satisfied if we ask for this assignment and if the column heading appears in the problem
notation.

to be computed obligatory r or r p or p t/T or t/T S

r ∅ – {C1, C7} ∅ {C6}
p {C4} {C1, C7} – {C2, C8} {C3}
t/T {C5, C9} ∅ {C2, C8} – ∅

Composition, recomputation and consistency checks. Suppose we want to compute
assignments for two or more entities simultaneously. Clearly, if there is no feasible
assignment for a single entity alone, then there is also no feasible assignment for
this entity if we additionally ask for other assignments at the same time. But if
the answer is positive, one can think of composing the computations for subprob-
lems by taking the assignment for the first entity as fixed input to the second
computation, and so on (although we consider decision problems, any reasonable
algorithm will actually compute a solution if the answer is positive). Note that
in general this straight-on composition of single-assignment problems does not
provide a decision algorithm for the respective multiple-assignment problem since
each subproblem asks for the existence of an arbitrary feasible assignment. So if
a particular assignment for some entity is fixed beforehand, there might not exist
a feasible assignment for another entity under this restriction – although simul-
taneous assignments for both entities are possible. However, this still leaves room
to construct algorithms that go back and forth between subproblems in various
ways. E.g., in order to find a solution to (r,p, t,−) one could start with (−,p, t,−)
to obtain a period assignment p, then try to solve (r, p, t,−) and if this fails, go
back to (−,p, t,−) for a different p′. We think it is important to know which of
these subproblems can be solved efficiently, and which are computationally hard,
as indicated by our hard/easy classification of all subproblems below.

Subproblems with fixed assignments in the input can also be understood as re-
computation problems if parts of the basic data have changed. As another example
suppose we already have a solution to (r,p,T, S) and teacher availabilities have
changed. Then (r, p,T, S) asks for a (new) feasible assignment of teachers to events
while keeping the previous room and period assignments, whereas (r,p, T, S) keeps
the allocation of teachers to events but re-schedules rooms and periods. Observe
that there are six subproblems that are reasonable to consider as recomputations
in order to react to the change of data besides computing a completely new solu-
tion to (r,p,T, S). Again, we think that it is fundamental to know which of these
problems can be solved efficiently and which are as hard as the general problem.

Finally, we think of subproblems as consistency checks for the data provided.
Suppose we look for a solution to (r,p, t, S). Before we initiate a costly computa-
tion for the general problem, it is reasonable to check the necessary condition that
solutions to (r,−,−, S), to (−,p,−, S) and to (−,−, t, S) must exist, even more
if these checks are easy to carry out. Note that positive answers to the remaining
double-assignment problems constitute necessary conditions as well. To sum up,
subproblems play an important role as a basis for understanding the structure of
a given specific UCT scenario.

220 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

3 Reductions between Subproblems

Intuitively, a subproblem with a fixed assignment for some entity should not be
easier than without considering this entity at all, and a subproblem where we
need to compute an assignment should not be easier than the case when a feasible
assignment is already given in the input for that entity. It turns out that we can
make this intuition precise in terms of polynomial-time many-one reductions be-
tween subproblems, but we will also find out that some details are quite sensitive
to the actual set of constraints. To formalize this we start with the definition of
a partial order ≺ on (the symbols in) each component of our subproblem nota-
tion given by the relations depicted in Fig. 1. We denote by � the reflexive and
transitive closure of ≺ and extend it in a natural way to a product order on sub-
problem notations. So for example it holds that (−,p, t,−) � (r,p,T, S) whereas
(−,p,−, S) and (r, p, T,−) are incomparable. We use the following theorem to
propagate complexity results among subproblems.

−

r r

−

p

p

−

t

t

T

T

−

S

Fig. 1 Partial order on (the symbols in) each component of the subproblem notation.

Theorem 1 If P and P ′ are subproblems, then P � P ′ implies P ≤p
m P ′.

Proof We consider each component and each relation from Fig. 1 separately due
to transitivity of ≤p

m. Let x be an instance of P. We show how to construct an
instance f(x) of P ′ such that x is a yes-instance for P if and only if f(x) is
a yes-instance for P ′. It will be obvious from the instructions for f(x) that its
construction can be carried out in time polynomial in the length of x.

1. Room component: Let P = (−, b, c, d) and P ′ = (r, b, c, d) for fixed b ∈
{−, p,p}, c ∈ {−, t, T, t,T} and d ∈ {−, S}. Moreover, let C ⊆ {C2, C3, C4, C5,
C8, C9} be the set of constraints for P as derived from (−, b, c, d). We need to add a
feasible room assignment to x such that C1 and C7 hold if b 6= −, and such that C6

holds if d 6= −. So we introduce a synthetic set of rooms R that are always available
and that have sufficient capacities for all students. Then we fix in f(x) for each
event one room from R such that all pairs of events have different rooms assigned,
and provide this room assignment as an additional input. Note that these rooms
are feasible w.r.t. C1 and C7 no matter how periods are assigned to events, and
that it is feasible w.r.t. C6 no matter how many students have selected an event.
Now suppose that x is a yes-instance of P and let tt be a witnessing timetable
that satisfies all constraints in C, and let tt′ be the same as tt but with the above
room assignment added. Then tt′ does not change the room assignment fixed in
f(x) and it still satisfies all constraints in C because no Ci ∈ C refers to rooms.

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 221

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

So f(x) is a yes-instance of P ′ as witnessed by tt′. Conversely, if tt′ is a timetable
witnessing that f(x) is a yes-instance of P ′, then dropping all room assignments
gives a feasible timetable for input x and constraint set C.

For the second case keep all notations but let P ′ = (r, b, c, d). Then we just
add the set of rooms R to obtain f(x) from x which allows for feasible room
assignments without affecting the other constraints. So if x is a yes-instance of P,
then there is also a timetable witnessing that f(x) is a yes-instance of P ′ since an
additional feasible room assignment exists, and dropping such a room assignment
conversely gives a feasible timetable for x.

2. Period component: Let P = (a,−, c, d) and P ′ = (a, p, c, d) for fixed a ∈
{−, r, r}, c ∈ {−, t, T, t,T} and d ∈ {−, S}. Moreover, let C ⊆ {C5, C6, C9} be
the set of constraints for P. We proceed as before and fix a period assignment in
advance that does not reduce the set of feasible timetables in P ′ although more
constraints need to be respected. So we introduce a synthetic set of periods P and
pre-assign each event to a different period from P . Additionally, we set the data in
f(x) such that all events, all rooms and also all teachers are always available. The
pre-assignment of periods is feasible since there are no period clashes for rooms,
teachers and students (C1, C2, C3) and all availablities are vacuously fulfilled (C4,
C7, C8). So solutions for x may serve as solutions for f(x) and vice versa.

For the second case let P = (a, p, c, d) and P ′ = (a,p, c, d) and observe that
both subproblems have the same set of constraints attached. However, in x there
is an assignment of periods to events already fixed and we have to ensure that
this given assignment is the only one that can be computed for instance f(x) –
without actually providing it in the input. This can be achieved by altering the
availablities of events such that each event is only available at the periods assigned
in x. If we leave all other data unchanged, then the set of feasible timetables for
x and f(x) coincide.

3. Teacher component: Reductions for this component can be easily obtained
from the following observations: To proceed in the third component from − to t
we can introduce as before a synthetic set T of teachers that are always available,
and assign to each event a different teacher. If a teacher assignment is already
given in the input we can reduce to t or T, respectively, if we use the abilities
of teachers per event to allow that only the formerly fixed assignment remains
feasible. Finally, observe that the single teacher requirement is just a special case
of multiple teachers, and we can set #Te = 1 when reducing from t to T.

4. Student component: It remains to look at P = (a, b, c,−) and P ′ = (a, b, c, S)
where we need to adapt x such that the additional constraints C3 and C6 do not cut
the set of feasible timetables. To do so we introduce a synthetic set S of students
each of which has selected a single but different event, and all rooms have capacitiy
at least 1 (note that we could set S = ∅ as well). ut

The proof shows why the partial order from Fig. 1 looks as it does when we
stick to the constraints from Table 1: Without any other constraints we don’t know
how to fix a given room assignment when we are asked to compute one, in contrast
to periods and teachers where we can use availabilities of events and the abilities
of teachers for this purpose. However, if we add a constraint like the requirement
of particular resources of rooms that are needed for an event, then we also have
− → r → r in the ≺-order for the room component. So if constraints are added or

222 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

removed, the diagram in Fig. 1 changes accordingly. We come back to this aspect
in Sections 6 and 7.

4 Bipartite Assignment Problems with Additional Constraints

In this section we introduce rather abstract problem definitions and determine
their complexity. We do so in a uniform way based on assignments in bipartite
graphs G = (A ∪ B,E) – a natural way to look at UCT subproblems. When we
apply these problems in our context, then A will mostly be a set of events. The
most basic version only requires that for each event exactly one assignment is
possible.

Basic Bipartite Assignment Problem (BAP)
Input: A bipartite graph G = (A ∪B,E).
Question: Is there an assignment M ⊆ E for A?

Obviously, a feasible assignment can be found iff each a ∈ A has at least degree
one, which we may assume w.l.o.g. since events with no possible assignments at
all can be initially discarded. So BAP without any other constraints is a trivial
problem. Next we turn to the case where different events must not be mapped to
the same entity on the right-hand side.

BAP(A)
Input: A bipartite graph G = (A ∪ B,E) and a family A = {Ai ⊆ A}i∈[α]

of conflicting sets.
Question: Is there an assignment M ⊆ E for A such that for all distinct ab,

a′b′ ∈ M it holds that b 6= b′ whenever a, a′ ∈ Ai for some i?

As an example consider (−,p, T,−) where events that share at least one teacher
need to be scheduled in different periods, which can be modeled by conflicting sets
At for each teacher. We notice that different properties of A are crucial for the
complexity of BAP(A).

Proposition 1

1. BAP(A) is NP-complete, even in the restricted case that G is complete and
that #{i|a ∈ Ai} = 2 for all a ∈ A.

2. BAP(A) is in P in the resctricted case that A is a partition of A.

Proof 1. Clearly BAP(A) is an NP problem. We show completeness by reduction
from Edge Coloring for arbitrary simple graphs [12]. Let G = (V,E) and some
integer k be given, and we ask if we can assign one out of k colors to each edge such
that no adjacent edges share the same color. We construct a complete bipartite
graph with vertex partitions A = E and B = [k] and obtain G′ = (E∪ [k], E× [k]).
Moreover, we set A = {Av | v ∈ V } where Av is the set of all edges incident to
v and hence conflicting w.r.t. color. Note that each edge appears exactly twice
in some set Av. Then (G, k) is a yes-instance of Edge Coloring if and only if
(G′,A) is a yes-instance of BAP(A).

2. If A is a partition of A, we look at each block Ai ⊆ A separately and need
to find a matching of Ai in all of the hereby restricted bipartite graphs [13]. ut

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 223

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

We also note that the first statement also holds in the restricted case that G
is complete and that #Ai = 2 for all i if we reduce from Vertex Coloring [14]
and swap edges and vertices in the reduction.

For the next problem observe that with a single family A of conflicting sets
we are only capable of modeling conflicts of the same kind, e.g., caused by given
teacher assignments. If more types of conflicts are present, e.g., if also room as-
signments already exist, then we need to extend our definitions to capture these
constraints as well.

BAP(A,A′)
Input: A bipartite graph G = (A ∪ B,E) and families A = {Ai ⊆ A}i∈[α]

and A′ = {A′
j ⊆ A}j∈[α′] of conflicting sets.

Question: Is there an assignment M ⊆ E for A such that for all distinct ab,
a′b′ ∈ M it holds that b 6= b′ if a, a′ ∈ Ai or a, a

′ ∈ A′
j for some i, j?

It is immediately clear from Prop. 1.1 that BAP(A,A′) is NP-complete even
if G is complete. So we only look at the case when A and A′ are both partitions
of A.

Proposition 2 Assume that A and A′ are partitions of A.

1. BAP(A,A′) is NP-complete, even if #(Ai ∩A′
j) ≤ 1 for all Ai, A

′
j.

2. BAP(A,A′) is in P in the restricted case that G is complete.

Proof 1. Clearly BAP(A,A′) is an NP problem. We show completeness by reduc-
tion from List Edge Coloring for bipartite graphs [19]. Let G = (X ∪ Y,E)
and lists L(e) of colors for each edge e ∈ E be given, and we ask if we can as-
sign one of the colors in L(e) to each edge e such that no adjacent edges share
the same color. We construct a bipartite graph G′ with vertex partitions A = E
and B =

⋃
e∈E L(e) and include edges ec ∈ A × B if c ∈ L(e). Moreover, we set

A = {Ax | x ∈ X} and A′ = {A′
y | y ∈ Y } where Ax and A′

y are the sets of
all edges incident to x ∈ X and y ∈ Y , respectively. Observe that A and A′ are
both partitions of A, and that #(Ax ∩A′

y) ≤ 1 since otherwise there is more than
one edge joining x, y in G. Then (G, {L(e)}e∈E) is a yes-instance of List Edge
Coloring if and only if (G′,A,A′) is a yes-instance of BAP(A,A′).

2. We show this by reduction to Edge Coloring for bipartite multigraphs [3].
So let G = (A ∪ B,A × B) and partitions A, A′ of A be given. We construct
G′ = ([α] ∪ [α′], E) as a bipartite multigraph with l edges between some i ∈ [α]
and j ∈ [α′] if #(Ai∩A′

j) = l, and ask if G′ can be properly colored with k = #B
many colors. Then (G,A,A′) is a yes-instance of BAP(A,A′) if and only if (G′, k)
is a yes-instance of Edge Coloring for bipartite multigraphs. ut

We summarize the complexity results by now for later reference and distinguish
different parameter combinations.

Ref. Problem #{i|a ∈ Ai} α #{i|a ∈ A′
i} α′ complete? P/NPC comment

1© BAP - - - - no P
2© BAP(A) = 1 arb. - - no P Prop. 1.2
3© BAP(A) = 2 arb. - - yes NPC Prop. 1.1
4© BAP(A) arb. arb. - - no NPC unrestricted
5© BAP(A,A′) = 1 arb. = 1 arb. yes P Prop. 2.2
6© BAP(A,A′) = 1 arb. = 1 arb. no NPC Prop. 2.1
7© BAP(A,A′) arb. arb. arb. arb. no NPC unrestricted

224 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

In order to model cases of two simultaneous assignments as in (r,p,t,-) we
further extend our constraints and consider two families of conflicting sets also on
the right-hand side for vertices in B.

BAP(A;B,B′)
Input: A bipartite graph G = (A ∪ B,E) and families A = {Ai ⊆ A}i∈[α],

B = {Bj ⊆ B}j∈[β] and B′ = {B′
k ⊆ B}k∈[β′] of conflicting sets.

Question: Is there an assignment M ⊆ E for A such that for all distinct ab,
a′b′ ∈ M it holds that {b, b′} 6⊆ Bj for no j and {b, b′} 6⊆ B′

k for no k
whenever a, a′ ∈ Ai for some i?

Observe that if we set B = {{b}|b ∈ B} as singeltons and omit B′ then we
meet the requirements of BAP(A), hence we know again from Prop. 1.1 that
BAP(A;B,B′) is NP-complete even if G is complete. However, in our UCT context
it might be that B and B′ are partitions of B.

Proposition 3 Assume B and B′ are partitions of B.

1. BAP(A;B,B′) is NP-complete even if A = {A}.
2. BAP(A;B,B′) is in P if A = {A} and if B or B′ is a family of singletons.

Proof 1. Clearly BAP(A;B,B′) is an NP problem. We show completeness by re-
duction from 3-Dimensional Matching (3DM) [14]. Given finite and pairwise
disjoint sets X, Y , Z with #X = #Y = #Z and some J ⊆ X × Y × Z we need
to decide whether a perfect matching M ⊆ J exists. To do so, we set A = X and
B = {yz ∈ Y × Z | ∃x xyz ∈ J} in our bipartite graph G. Edges x(yz) ∈ A × B
exist iff (x, y, z) ∈ J . Partitions B and B′ of B are induced by Y and Z, i.e.,
each By (B′

z) consists of all vertices from B containing y (z, respectively), which
ensures that each of these vertices is chosen at most once. Note that we get a
perfect matching since we ask for an assignment for A. Finally let A = {A} such
that constraints need to be respected for all pairs of vertices from A = X. Then
(X,Y, Z) is a yes-instance of 3DM if and only if (G,A,B,B′) is a yes-instance of
BAP(A;B,B′).

2. Now suppose that additionally and w.l.o.g. B = {{b}|b ∈ B} Then we only
need to decide whether there is a matching of A in G. If partition B′ is not a
family of singeltons, then we merge all vertices from each B′

k ∈ B′ into a single
vertex and again ask for a matching of A. ut

Finally we recall a variation of the NP-complete problem known as Perfect
Matching with Node Partitions [21] where M only has to be a matching of
A instead of being perfect.

Bipartite Matching Problem with Vertex Partitions (BMP(A;B))
Input: A bipartite graph G = (A ∪B,E) and partitions A of A and B of B

of conflicting sets.
Question: Is there a matching M ⊆ E of A such that for all distinct ab, a′b′ ∈ M

it holds that neither a, a′ are in the same block of A, nor b, b′ are in
the same block of B?

As an example consider (r,p,t,-) where partitions A and B naturally appear
when events are grouped by teachers, and rooms by available periods, resp.. How-
ever, in this case the edges between two blocks have a special structure due to the

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 225

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

fact that events and teacher have no room restrictions in our model (note that the
fourth component is −, we discuss additional constraints in Sec. 6). We make this
observation precise with the following notations.

For G = (A ∪ B,E) we say that E′ ⊆ E is closed under product if for all
distinct edges ab, a′b′ ∈ E′ it holds that ab′, a′b ∈ E′. A subgraph G[A′ ∪ B′] of
G induced by A′ ⊆ A and B′ ⊆ B is closed under product if its edge set has this
property. Finally, a bipartite graph G with partitions A and B is closed under
product if each subgraph G[Ai ∪Bj] for all i, j has this property.

Proposition 4 BMP(A;B) is in P if G is closed under product w.r.t. A,B.

Proof We show this by reduction to Max Flow [9]. Let (G = (A ∪ B,E),A,B)
be an instance of this problem, and call a block Bj connected to some a ∈ Ai if
there exists at least one edge ab with b ∈ Bj (and vice versa).

Construction. We define a flow network F = (V,E′) as follows (cf. Figure 2):
All edges in F have capacity one. The source s has an edge to all vertices of the
first layer A. The second layer consists of all vertices ij ∈ [#A]× [#B] and a ∈ Ai

has an edge to some ij if it is connected to Bj . The third layer has a copy of each
ij linked with a single edge. The last layer consists of all vertices from B. Each ij
from the third layer has an edge to some b ∈ Bj if b is connected to Ai. Finally, all
b ∈ B have an edge to the sink t. We ask for a flow f in F with value v(f) = #A.

s�
�

� �
�

ij

ij0
Ai

Ai0

�

�
�

�
�

�
�

�

�

Bj

Bj0

t�

ij

ij0
bj

b0j

bj0

b0j0

...

... ...

i0j

i0j0 i0j0

i0j

A B

� �... ...

a

a0

a00

...

Fig. 2 Sketch of a resulting flow network.

Assume that M is a matching of A such that for all distinct ab, a′b′ ∈ M in
holds that neither a, a′ are in the same block of A nor b, b′ are in the same block
of B. For each ab ∈ M with a ∈ Ai and b ∈ Bj we obtain disjoint s-t-paths each
with one unit of flow on edges (s, a), (a, ij), (ij, ij), (ij, b), (b, t). Note that this also
works if G is not closed under product.

Conversely, suppose there is a maximum flow f with integer value v(f) = #A.
Then each edge (s, a) carries one unit of flow and for all a ∈ A there exist v(f)
distinct paths P = (a, ij, ij, b) to some b ∈ B. All vertices on these paths are
pairwise distinct since they all have either in- or outdegree of one with capacity

226 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

one. We define M as the set of all edges ab if P carries one unit of flow. Since
(a, ij) ∈ E′ there exists some b′ ∈ Bj with ab′ ∈ E by construction. Moreover,
there is some a′ ∈ Ai with a′b ∈ E due to (ij, b) ∈ E′. So ab ∈ E since G is closed
under product and M ⊆ E. Finally, there are no two edges in M connecting the
same pair of blocks Ai, Bj due to capacity one on (ij, ij). ut

We summarize the remaining problems as follows.

Ref. Problem A B or B′ P/NPC comment

8© BAP(A;B,B′) {A} singletons P Prop. 3.2
9© BAP(A;B,B′) {A} arb. part. NPC Prop. 3.1
10© BAP(A;B,B′) arb. part. arb. part. NPC unrestr.
11© BMP(A;B) with product closure arb. part. arb. part. P Prop. 4
12© BMP(A;B) arb. part. arb. part. NPC [21]
13© BMP(A;B) arb. arb. NPC unrestr.

5 Complexities of all UCT Subproblems

In this section we derive the complexities of all UCT subproblems. In light of The-
orem 1 it is sufficient for a complete classification to identify �-maximal problems
that are in P and �-minimal problems that are NP-complete.

Theorem 2

1. The �-maximal UCT-subproblems in P are
(r, p,T, S), (r, p,T, S), (r,p,−,−) and (r,p, t,−).

2. The �-minimal UCT-subproblems that are NP-complete are
(−,p, T,−), (−,p,−, S) and (r,p, t,−).

Proof For each problem we mention the respective reduction and provide some
indication how the reduction works. We use problem references i© from Section 4
and write → i© if the current subproblem is reducible to problem i© and i©→ if
problem i© is reducible to our subproblem.

(r,p,−,−): → 2©
Events are grouped subject to common rooms into blocks Ai. Edges are present
due to availabilities of events and rooms.

(r, p,T, S): → 2©
We partition events in A according to common periods. To ensure exactly #Te

distinct assignments of teachers we copy each event and the incident edges #Te

times. Note that all copies are in the same block of A. Teacher abilities are
respected by (non-)existence of edges.

(r, p,T, S) : → 2©
Assignments for rooms and teachers can be found independently in our setting
since they do not share any constraints. Observe that if a period assignment is
already present that is feasible for teachers and students, then we find feasible
rooms when events are paritioned in A according to common periods. Edges
exist if the room is eligible w.r.t. period availability and sufficient capacity for
the given students. If a period assignment is already present that is feasible for
rooms and students, then we can assign teachers as in (r, p,T, S) above.

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 227

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

(r,p, t,−): → Max Flow
We construct a flow network F = (V,E′) with four layers of vertices similar
to Proposition 4 as follows: All edges in F have capacity one. The source is
connected to all events e ∈ E. The second layer consists of all eligible teacher-
period combinations tp ∈ T ×P (C8). An edge between an event and a teacher
period is drawn if the teacher is able to teach the event (C5) and if the event
is available in the respective period (C4). The third layer has a copy of each
teacher-period combination linked with a single edge. The last layer consists
of all eligible room-period combinations rp ∈ R × P (C7). Edges between the
third and fourth layer are drawn if the vertices have common periods. Finally,
all room periods are connected to the sink and we ask for a flow f with value
v(f) = #E.
The set of feasible assignments of events e → (re, pe, te,−) to rooms, teachers
and periods translates into #E many s-t-paths P = (s, e, tp, tp, rp, t) in F , each
with one unit of flow. Due to constraints C1 and C2 these paths are pairwise
vertex-disjoint and hence respect all capacities.
Conversely, suppose there is a maximum flow f with integer value v(f) = #E.
Then each edge (s, e) carries one unit of flow and there exist v(f) distinct
s-t-paths P = (s, e, tp, tp, rp, t) from which we obtain an assignment e →
(re, pe, te,−) for each e. By construction, it remains to verify C1 and C2. To
see this note that all inner vertices of all paths are pairwise distinct due to
having either in- or outdegree with capacity one.

(−,p, T,−), (−,p,−, S): 3©→
If (G = (A ∪ B,A × B),A) is an instance of 3© we regard A as events, B as
periods and edges as (full) availabilities of events. Each Ai ∈ A represents a
teacher or student, respectively. Teachers are available for all periods as well.
Observe that these subproblems are already NP-complete if each event has
only two teachers that are always available, or two students.

(r,p, t,−): 6©→
If (G = (A ∪ B,E),A,A′) is an instance of 6© we regard A as events, B as
periods and edges as availabilities of events. Moreover, we assign room i to each
event a ∈ Ai and teacher j to all events a ∈ A′

j , both with full availability.
ut

Note that subproblem (−,p,−, S) is equivalent to the timetable problem with
student choice considered in [4], NP-completeness of problem (r,p, t,−) also can
be obtained by reducing from the class-teacher problem with teacher and class
availabilities [8].

With both Theorems 1 and 2 we now have the hard/easy-classification of all
subproblems as depicted in Tables 3 and 4.

For practical implementations the reductions in Table 3 provide polynomial-
time algorithms indeed, however some of them are just as easy as the very basic
assignment problem BAP: (r,−,−,−), (−p,−,−), (−,−, t,−) and (r,−, t, ∗) can
already be captured by problem 1©. Similarly, we can provide bipartite assignment
problems as natural upper bounds that capture the NP-complete subproblems,
which we show without further proof in Table 5. So an algorithm for a single
problem i© in this table can be used to solve the UCT subproblems in the same
row in a straightforward way.

228 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

Table 3 Efficiently decidable subproblems.

Subproblems P � P ′ Reduction No. of subproblems

(∗, ∗,T, ∗), (∗, ∗, t, ∗) (r, p,T, S) → 2© 16
(−,p,−,−) (r,p,−,−) → 2© 2
(r,p,−/t,−), (−,p, t,−), (−,p, t,−) (r,p, t,−) → Max Flow 5
(r, ∗, ∗, ∗),(r, ∗,T, ∗), (r, ∗, t, ∗) (r, p,T, S) → 2© 20

43

Table 4 NP-complete subproblems.

Reduction Subproblem P � P ′ No. of subproblems

3©→ (−,p, T,−) (r,p, T, ∗), (r,p,T, ∗), (∗,p, T, ∗), (∗,p,T, ∗) 12
3©→ (−,p,−, S) (r,p,−/t, S), (∗,p,−/t, S), (r,p, t, S), (∗,p, t, S) 9
6©→ (r,p, t,−) (r,p, t,−) 2

23

Table 5 NP-complete subproblems and how they can be modeled.

subproblems Reduction

(−,p, T,−), (−,p,−, S), (r,p, T,−), (r,p,−, S), (−,p, t, S) → 4©
(r,p, ∗, ∗) → 7©
(r,p, t, S) →10©
(r,p, t,−) →12©
(r,p, t, S) →13©

6 Additional Constraints On Teachers and Rooms

In this section we look at some variants of UCT subproblems which occur by adding
constraints w.r.t. teachers and rooms. We consider the following three constraints,
which sound quite similar but have different effects on complexities:

C10 An event can only have a room that is eligible for the assigned teacher.
Each teacher has a set of rooms where she can teach, regardless of which event.
For example, some teachers require rooms which are easily accessible.

C11 An event can only have a room that is eligible for this event.
Each event has a set of suitable rooms we can choose from. For example, some
events require a room with certain technical equipment.

C12 An event can only have a room that meets the room restictions of the assigned
teacher for this event.
Each teacher defines a set of rooms per event where she can teach, e.g., some
teachers need a blackboard for certain events while others require two projec-
tors for the same event.

Constraints C10 and C12 need to be considered if both rooms and teachers
are part of the subproblem notation, while C11 is active in all room-assignment
problems. In Table 6 we list all relevant subproblems that were in P in the hith-
erto model and where we now add one of the above constraints. Additionally we
mention the respective bipartite assignment problems used in the reductions. The
complexity status of subproblem (r, p,T,−) remains open in one case.

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 229

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

Table 6 Relevant subproblems in P and their complexity if either constraint C10, C11 or C12

is added.

Subproblems + C10 + C11 + C12

(r, p, T, ∗) P → 2© P → 2© P → 2©
(r, p,T, ∗) P → 2© P → 2© P → 2©
(r,−, t, ∗) P → 2© P → 2© P → 2©
(r,−,T, ∗) P P → 2© P
(r, p, t,−) P →11© P → 2© NPC 9©→
(r, p,T,−) ? P → 2© NPC 9©→
(r,p, t,−) P →11© NPC 12©→ NPC 12©→
(r,p, t,−) P →Max Flow NPC 12©→ NPC 12©→

We mention indications of some reductions to justify complexities.

C10, C11, C12: (r, p, T, ∗) → 2©:
Edges in 2© exists if the room is eligible with regard to sufficient capacity,
the assigned teacher (C10), the event (C11) or the teacher-event combination
(C12).

C10, C11, C12: (r, p,T, ∗) → 2©:
Edges in 2© exists if the teacher has ability to teach an event and the room
is eligible for him (C10), for the event (C11) or for the given teacher-event
combination (C12).

C10, C11, C12: (r,−, t, ∗) → 2©:
If C10 or C12 are activated vertices in B represent an eligible room-teacher
combination. Edges are present if a teacher has ability to teach an event and
the room has sufficient capacity C10. For activated C12 we must additionally
ensure that the teacher-room combination is eligible for the respective event.
If C11 is activated rooms and teachers do not share constraints and hence they
can be calculated independently. Observe non existence of edges in case of the
room assignment if an room is not eligible for an event.

C10, C12: (r,−,T, ∗):
We sketch algorithm which decides this problem in O(#E ·#R ·#T). For each
event, we try a room and check, if this room is eligible for at least #Te many
teachers which have ability to teach this event. If so, we move on with the next
event. If not, we try the next room and ask again. If this is not successful for
an event, we return a ‘no’-answer.

C10: (r, p, t,−) → 11©:
For each period we construct an instance of BMP(A;B) which is closed under
product as follows: We set A = {A} since all events in a common period are
pairwise conflicting. Eligible teacher-room combinations are partitioned in B
according to common teachers. Eligible in this case means that a teacher and
room are available in the considered period and the room is in the teacher’s
room set. Edges are drawn between some event and a teacher-room combina-
tion if the respective teacher is able to teach the event. Note that if a teacher
has ability to teach an event then the event is connected to all rooms of that
teacher, which shows closure under product.

C10: (r,p, t,−) → 11©:
We partition all events in A according to common teachers. All eligible room-
period combinations are partitioned in B according to common periods. Edges

230 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

between events and room-periods exist if an event and its assigned teacher are
available in this period and the room is in the teacher’s room set. Note that if
events of the same teacher are available in a same period then all those events
are connected to the same room-period combinations in this period block, so
closure under product holds.

C11, C12 : 12©→ (r,p, t,−)
We regard A as events partitioned to common teachers and B as room-periods
combinations partitioned to common periods. Edges between an event and a
room-period combination are regarded as:
– the event is available in this period,
– the teacher is available in this period,
– if C11 is activated: the room is eligible for this event
– if C12 is activated: the room is eligible for the teacher in combination with

this event
Observe that in this case we can not obtain closure under product.

C12: 9©→ (r, p, t,−):
If (G = (A ∪ B,E), {A},B,B′) is an instance of 9© with partitions B, B′ we
regard A as events scheduled in a common period. Each vertex in B is regarded
as a room-teacher combination and edges indicate that a teacher-room combi-
nation is eligible for an event. That is, if the teacher has ability to teach this
event, she is available and the respective room is in her set of eligible rooms for
this event. Each block of partitions B and B′ is regarded as a common teacher
or a common room, respectively. Since all events are scheduled in parallel, each
teacher and each room can be assigned at most once.

C10: (r,p, t,−) → Max Flow:
We construct a flow network F with four layers similar to the proof of sub-
problem (r,p, t,−) of Theorem 2. All edges have capacity one. The source
is connected to all events e ∈ E and events are connected to eligible teacher-
period combinations tp ∈ T×P (C4, C5, C8). All teacher periods are connected
to their respective copy in the third layer. The last layer consists of eligible
room periods rp ∈ R × P (C7) which are linked to third layer vertices if they
have a common period and the respective room is eligible for the respective
teacher (C10). Finally, all room periods are connected to the sink and we ask
for a flow f with integer value v(f) = #E.
The set of feasible assignments of events e → (re, pe, te,−) to rooms, teachers
and periods translates into #E many distinct paths P = (s, e, tp, tp, rp, t) in
F each with one unit of flow. Due to constraints C1 and C2 these paths are
pairwise vertext-disjoint and hence respect all capacities.
Suppose there is a maximum flow f with value v(f) = #E. Then each edge
(s, e) carries one unit of flow and there exist v(f) distinct s-t-paths P =
(s, e, tp, tp, rp, t) from which we obtain an assignment e → (re, pe, te,−) for
each e. By construction, it remains to verify C1 and C2. To see this note that
all inner vertices of all paths are pairwise distinct due to having either in- or
outdegree with capacity one.

C11, C12: 9©→ (r,p, t,−):
If (G = (A ∪ B,E), {A},B,B′) is an instance of 9© we regard A as events
and each vertex in B represents an eligible room-teacher-period combination.
Edges indicate that the event is available at the respective period, the teacher
can teach this event and the room is eligible for this event (C11) (or for the

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 231

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Britta Herres, Heinz Schmitz

respective event-teacher combination if constraint C12 is activated). Each block
of partitions B and B′ is regarded as a period of a common teacher or of a
common room, respectively.
In this cases events and rooms share constraints and hence a structure as
mentioned for constraint C10 can not be obtained.

7 Conclusion

We have settled the complexities of all subproblems of a UCT model with a typical
set of constraints. Our decomposition approach is such that subproblems can be
understood as re-computation problems, as building blocks for algorithms or as
consistency checks for the general task. To obtain this classification we have carried
out the following program of investigations:

(1) Identify an order relation on subproblems that is consistent with polynomial-
time many-one reductions (Sec. 3).

(2) Use abstract models (Sec. 4) to settle the complexity of all subproblems with
help of maximal and minimal subproblems w.r.t. this relation (Sec. 5).

(3) Capture groups of subproblems with the same model and identify common
computational tasks (Sec. 5).

(4) Analyse the effect of variations of constraints on selected subproblems (Sec. 6).

We think that apart from our concrete results which may appear in several
UCT scenarios, in particular (3) gives a strong motivation to look for algorithms
for some of the specialized bipartite assignment problems from Section 4. Future
research could also comprise to work on some of the limitations of our initial model.
So we can ask how student sectioning can fit into such an approach, and how other
constraints can be included. For example, limiting the workload of teachers can
be modeled by limiting the number of edges from certain sets of edges in an
assignment (cf. [24]).

Another line of research can be to determine the borderline between easy and
hard problems more precisely in terms of parameters that are relevant to practical
applications: Note for example that problem BAP(A) with an arbitrary number α
of conflicting sets is hard, but we know that it is easy if α ≤ 3. Since α corresponds
in some scenarios to the number of different curricula one can ask if BAP(A) is
still hard for any fixed α. Another example are multiple-assignment subproblems
where the assignment of a single teacher is easy, while the same task is hard if
events can have multiple (and yet unbounded number of) teachers. Finally, we also
believe that our approach (1)-(4) can serve as a blueprint to analyse the structure
of UCT models with other sets of constraints in order to get more insight into
different what-if scenarios.

References

1. Asratian, A., de Werra, D.: A generalized classteacher model for some timetabling prob-
lems. European Journal of Operational Research 143(3), 531 – 542 (2002)

2. Babaei, H., Karimpour, J., Hadidi, A.: A survey of approaches for university course
timetabling problem. Computers & Industrial Engineering 86, 43–59 (2015)

232 Britta Herres and Heinz Schmitz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Uniform Decomposition of UCT Problems

3. Cole, R., Ost, K., Schirra, S.: Edge-Coloring Bipartite Multigraphs in O(E logD) Time.
Combinatorica 21(1), 5–12 (2001)

4. Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems. In:
E. Burke, P. Ross (eds.) Practice and Theory of Automated Timetabling, pp. 281–295.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

5. Csima, J.: Investigations on a Time-table Problem. Ph.D. thesis, School of Graduate
Studies, University of Toronto (1965)

6. Dostert, M., Politz, A., Schmitz, H.: A complexity analysis and an algorithmic approach
to student sectioning in existing timetables. Journal of Scheduling 19(3), 285–293 (2016)

7. ten Eikelder, H.M.M., Willemen, R.J.: Some Complexity Aspects of Secondary School
Timetabling Problems. In: E. Burke, W. Erben (eds.) Practice and Theory of Automated
Timetabling III, pp. 18–27. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

8. Even, S., Itai, A., Shamir, A.: On the Complexity of Time Table and Multi-commodity
Flow Problems. In: Proceedings of the 16th Annual Symposium on Foundations of Com-
puter Science, SFCS ’75, pp. 184–193. IEEE Computer Society, Washington, DC, USA
(1975)

9. Ford, L.R., Fulkerson, D.R.: Maximal Flow Through a Network, pp. 243–248. Birkhäuser
Boston, Boston, MA (1987)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

11. Gotlieb, C.C.: The Construction of Class-Teacher Time-Tables. In: IFIP Congress, pp.
73–77 (1962)

12. Holyer, I.: The NP-Completeness of Edge-Coloring. SIAM J. Comput. 10(4), 718–720
(1981)

13. Hopcroft, J.E., Karp, R.M.: An n5/2 Algorithm for Maximum Matchings in Bipartite
Graphs. SIAM J. Comput. 2(4), 225–231 (1973)

14. Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer US,
Boston, MA (1972)

15. Kingston, J.H.: Timetable construction: the algorithms and complexity perspective. An-
nals of Operations Research 218(1), 249–259 (2014)

16. Kostuch, P.: The University Course Timetabling Problem with a Three-Phase Approach.
In: E. Burke, M. Trick (eds.) Practice and Theory of Automated Timetabling V, pp.
109–125. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

17. Kristiansen, S., Stidsen, T.: A Comprehensive Study of Educational Timetabling - a Sur-
vey. Report 8.2013, Department of Management Engineering, Technical University of
Denmark (2013)

18. Lach, G., Lübbecke, M.E.: Curriculum based course timetabling: new solutions toUdine
benchmark instances. Annals of Operations Research 194(1), 255–272 (2012)

19. Marx, D.: NP-completeness of list coloring and precoloring extension on the edges of planar
graphs. Journal of Graph Theory 49(4), 313–324 (2005)

20. McCollum, B.: University Timetabling: Bridging the Gap between Research and Practice.
In: in Proceedings of the 5th International Conference on the Practice and Theory of
Automated Timetabling, pp. 15–35. Springer (2006)

21. Plaisted, D.A., Zaks, S.: An NP-complete matching problem. Discrete Applied Mathe-
matics 2(1), 65–72 (1980)

22. Rudova, H.: University Course Timetabling - From Theory to Practice. In: Multidisci-
plinary International Scheduling Conference (MISTA 2015) (Talk). Prague, Czech Repub-
lic (2015). URL https://www.fi.muni.cz/ hanka/publ/mista15.pdf

23. Schindl, D.: Student sectioning for minimizing potential conflicts on multi-section courses.
Proceedings of the 11th International Conference of the Practice and Theory of Automated
Timetabling (PATAT 2016) pp. 327–337 (2016)

24. Tanimoto, S.L., Itai, A., Rodeh, M.: Some Matching Problems for Bipartite Graphs. J.
ACM 25(4), 517–525 (1978)

25. de Werra, D.: Construction of school timetables by flow methods. INFOR Journal 9(1),
12–22 (1971)

26. de Werra, D.: Constraints of Availability in Timetabling and Scheduling. In: E. Burke,
P. De Causmaecker (eds.) Practice and Theory of Automated Timetabling IV, pp. 3–23.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

Decomposition of University Course Timetabling - A Systematic Study of Sub-
problems and their Complexities 233

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

