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An integer programming approach for the physician
rostering problem

Toni I. Wickert - Alberto F. Kummer Neto -
Luciana S. Buriol

Abstract Nurse and physician rostering problems seek to find an optimal way to as-
sign nurses and physicians to shifts respecting a set of hard and soft constraints. If
a single hard constraint is violated, the solution is considered infeasible, while soft
constraints violations are penalized in the objective function. This paper presents an
integer programming model and a matheuristic algorithm for the physician roster-
ing problem. Moreover, a comparison of the physician and nurse rostering is ana-
lyzed to identify common constraints present in both problems. The studied Nurse
Rostering Problem (NRP) is based on the constraints proposed for the Second In-
ternational Nurse Rostering Competition (INRC-II), while the Physician Rostering
Problem (PRP) presents constraints provided by Hospital de Clinicas de Porto Ale-
gre (HCPA), Brazil. Due to the difficulty of solving large instances, a matheuristic is
proposed to tackle the problem. Results demonstrate that the matheuristic generated
near-optimal results within an acceptable computational time limit.

1 Introduction
Healthcare personnel rostering is a common problem found in healthcare institutions

and often a difficult task to be done manually. Due to a high number of possibilities,
schedules organization is time-consuming and many times generates poor results. The
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automation of this task, using computational techniques, brings a series of benefits
such as better employees distribution during the rosters, less time to organize the
rosters and consequently an overall cost reduction.

In the literature, the most common problem found related to healthcare rostering
is the Nurse Rostering Problem (NRP). There is a wide literature where the problem
was approached in hospitals specific problems such as [5,6,12]. Moreover, two com-
petitions were organized such that the researchers could test their solving methods
and compare results among participants. These are the cases of the INRC-I [11] and
INRC-II [7].

A similar problem is the physician rostering, that aims to generate rosters for
physicians in a variety of areas. For example, physicians can be scheduled to hos-
pitals emergencies, intensive care units, and cancer treatment units, according to the
demand of each area and the physician’s specialty. The Physician Rostering Problem
(PRP) received less attention in the literature when compared to the NRP.

This work approaches the PRP with a specific study based on the data provided
by Hospital de Clinicas de Porto Alegre (HCPA), Brazil. An integer programming
formulation was proposed, and an extension to the INRC-II instances was developed
to add some specific constraints for the PRP. Moreover, 10 instances with 50, 100
and 150 physicians were generated and approached using a MIP solver and a Fix-
and-Optimize (F&O) matheuristic.

The present paper addresses three primary research questions, namely:

— Isit possible to solve small and medium size instances using integer programming
and a MIP solver in a reasonable time?

— What are the differences between the constraints present in the INRC-II instances
and a real-world PRP?

— Can a matheuristic developed for the NRP be adapted, with a few changes, and
generate good results for the PRP?

The remaining paper is organized as follows. Section 2 presents the literature
review. Section 3 presents the PRP constraints and a comparison with the constraints
of the NRP proposed for the INRC-II. Section 4 presents the integer programming
formulation for the PRP. Section 5 presents the F&O matheuristic employed to solve
the PRP instances. Section 6 presents the results obtained by the F&O matheuristic
and a comparison with a MIP solver, while Section 7 presents the conclusions and
future work.

2 Literature Review

Personnel rostering has received considerable attention in the literature. The work
of [9] presents an overview of models and methods concerning the general personnel
rostering. Interested readers are referred to [8] for a general overview regarding PRP.

The work developed by [2] presents an Integer Programming (IP) model for
the PRP and employes a MIP solver to solve the model. The IP model satisfies all
service requirements and contractual agreements (including rest periods and annual
leave), while trying to respect, as much as possible, employees preferences with par-
ticular attention on workload balancing, and additional preference aspects related to
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each physician. They applied the developed model in a real-world case of physician
scheduling in some of the departments of one of the largest Italian university hos-
pitals. Reported results demonstrate the effectiveness of the proposed optimization
approach when compared to the solution obtained manually.

The approach proposed by [16] tackles a physician scheduling problem with flex-
ible shifts. The problem consists of a fixed number of identical physicians who are
scheduled over a planning horizon, where each day consists of periods of one hour.
They solved the problem using a decomposition heuristic where the overall problem
is decomposed into weekly subproblems. The decomposition heuristic generated the
best results in less time when compared to the other solving methods, and a previous
work [3].

The authors of [4] developed a column generation to tackle the physician schedul-
ing problem with different experience levels in hospitals. The data were provided by
an anesthesia department of an 1100-bed hospital. They employed the column gener-
ation procedure because the MIP solver was not able to solve the weekly subproblems
up to optimality within several hours. The authors developed a column generation
based heuristic to obtain integer solutions. Computational results show the efficiency
of the proposed algorithm in finding near-optimal and optimal solutions.

The work of [10] studied a real-world problem in a surgery department of a large
government hospital of Singapore. Instead of assigning physicians to shifts, physi-
cians are assigned to a set of tasks incorporating a large number of constraints and
complex physician preferences. For small and medium instances they employed a
MIP solver, while to address the larger instances they developed a two-phase local
search algorithm: Phase 1 consists of a greedy heuristic that is used to initialize a
solution, while in phase 2 a local search algorithm with different types of neighbor-
hood structures is used to improve the solution. The experiments demonstrate that
the heuristic generates good results in an acceptable time limit when employing the
larger instances.

A solving method using constraint programming combined with local search and
some ideas from genetic algorithms was proposed by [14]. The constraint program-
ming model was used to solve the hard constraints. After this process, a set (or pop-
ulation) of solutions are generated by starting the search on different days. Although
this step usually takes only a few seconds, a cutoff time was imposed to avoid wasting
time on difficult instances. To improve the pool of solutions, they combine attributes
of the best solutions using a crossover operator. This combination generates a partial
solution to the problem which is then completed by invoking the MIP solver for the
incomplete part, a similar technique of large neighborhood search. This evolutionary
process tends to generate better solutions at each iteration. The process terminates
when the best solution is found or until a time limit. For the experiments, instances
from two Canadian hospitals were employed.

A genetic algorithm to schedule physicians for emergency rooms was proposed
by [13]. An encoding called doctor-shift view that assigns doctors to shifts was de-
veloped. The design of a heuristic-schedule allows to create an initial population of
feasible solutions. Specific crossover operators were necessary to be implemented to
allow the exchange of whole work weeks, together with a repair function. With this
function, it is possible the creation of new populations with feasible solutions. The
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experiments were based on instances provided by a Spanish hospital. The proposed
genetic algorithm was tested in different situations, generating good quality solutions
as well as time-saving in designing the rosters.

A MIP formulation for the integrated physician and surgery scheduling problem
was approached by [17]. The model is based on the most frequently observed objec-
tives and restrictions of the surgery scheduling and the physician rostering problem in
the literature. Data provided by a Belgian hospital was employed to validate the ex-
periments. Experiments using a MIP solver were conducted employing instances up
to 5 operating rooms, 50 surgeries and 20 physicians on a weekly schedule planning
horizon.

The difference of this work compared to the existing literature is regarding the
model and solving method. In this approach physicians work in multiple locations,
so the solving method needs to decide which is the best working location for each
day and shift during the planning horizon. Moreover, double shift assignments on
weekends and holidays are considered to attend the hospital requirements.

3 Physician rostering problem constraints

According to our study, the set of constraints proposed for the INRC-II are the most
similar compared to the tackled PRP. Table 1 presents a comparison between the con-
straints of the INRC-II and the data provided for the PRP. As can be observed, there
are eight hard constraints, two are common in both problems, and six are specific
from NRP or PRP. There are fourteen soft constraints, seven are present in both, and
seven are specific for each problem.

The primary differences of this specific PRP, compared other PRP and NRP found
in the literature, is that a physician must be assigned to both day shifts, or one Night
shift, or none shift on weekends and holidays. The proposed integer programming
formulation covers the following constraints:

Hard constraints

H1. A physician can be assigned to at most one shift per day during weekdays;

H2. A physician must be assigned to both day shifts, or one Night shift, or none shift
on weekends and holidays;

H3. A shift type succession must belong to a valid succession (for example, a Night
shift cannot be followed by an Early or Late shift);

H4. A physician can be available at only some (or none if in vacation) shifts to work;

HS. The worked shifts must be at the same location in a single day on Saturdays,
Sundays and holidays. For example, if a physician works on Saturday during
Early and Late shift, both shifts must be at same location;

Soft Constraints

S1. Minimum number of physician per day/shift/location;
S2. Maximum number of physician per day/shift/location;
S3. Maximum number of consecutive assignments per Night shifts;
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Table 1 Comparison between the constraints proposed by the INRC-II and the real world PRP

Hard Constraints INRCII PRP
A nurse/physician can be assigned to at most one shift per day X -
A nurse/physician can be assigned to at most one shift per day on weekdays X X
A nurse/physician must be assigned to both day shifts, or a Night shift, or have a - X
day off on weekends and holidays

Minimum number of nurses/physicians by day/shift/skill X -
A shift type succession must belong to a valid succession (ex.: Night shift fol- X X
lowed by Early shift is not allowed)

A shift of a given skill must necessarily be fulfilled by a nurse/physician having X -
that skill

A nurse/physician can be available at only some (or none if in vacation) shifts to - X
work

On the day shifts on weekends and holidays, the nurse/physician must work at - X

same location

Soft Constraints INRCII PRP

Preferred number of nurses/physicians by day/shift/skill X
Minimum number of nurses/physician by day/shift/location

Maximum number of nurses/physician by day/shift/location

Minimum number of consecutive assignments by shift

Maximum number of consecutive assignments by shift

Minimum number of consecutive assignments

Maximum number of consecutive assignments

Minimum number of consecutive days off

Maximum number of consecutive days off

An undesired working day/shift is penalized

It is preferred that a nurse/physician works on the two days of a weekend, or
none

Minimum number of working days by schedule

Maximum number of working days by schedule

Maximum number of working weekends

>R

e

PR R KR K
Po<o

XXX
>R

S4. Maximum number of consecutive assignments;

SS. An undesired working day/shift is penalized;

S6. It is preferred that a physician works on the two days of a weekend, or none;
S7. Minimum number of working days over the planning horizon;

S8. Maximum number of working days over the planning horizon;

S9. Maximum number of working weekends.

A summary of the input data files generated to solve the physician rostering is
provided below. The input format is based on the INRC-II files, with a few changes
to attend the differences between the constraints of each problem.

— Scenario: contains the planning horizon (number of weeks), locations (in-patient
unit 1, in-patient unit 2, emergency room 1, emergency room 2), contracts (full-
time, part-time), physician identifications (names), shift types (Early, Late, Night);

— Week Data: minimum and maximum number of physicians for each day/shift/lo-
cation, days/shifts-off requests, days/shifts that a physician is not available;
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— History: border data to check the constraints regarding consecutive assignments
(for example, maximum consecutive working days on same shift and maximum
consecutive working days).

3.1 Example of a physician rostering problem

Table 2 represents a simple roster presented in the physician-day view, containing
three physicians (Physicianl, Physician2 and Physician3), three shifts (Early [E],
Late [L] and Night [N]), and three locations (In-patient Unit1 [1], In-patient Unit2 [2],
and In-patient Unit3 [3]). The day shifts (Early and Late) have 6 hours, while the
Night shifts have 12 hours. The shifts are organized as follows:

— Early (6h): 08-14h;
— Late (6h): 14-20h;
— Night (12h): 20-08h.

The basic unit is a 6h-shift, once a physician is not allowed to work partial shifts.
The Night shift has 12h, while the day shifts (Early and Late) have 6h. By this way, if
a physician works a Night shift it is considered as two worked shifts. This procedure is
necessary to calculate the total number of working shifts during the planning horizon.

As an example, Physicianl works on Monday on Late shift at location In-patient
Unitl, on Tuesday on Late shift at location In-patient Unit2, and on Saturday/Sunday
on both day shifts (Early and Late) at location In-patient Unitl. Dashes represent a
day off. Marked in gray, are the day shifts (Early and Late) on Saturday and Sunday,
that must be worked together, and the Nights shifts, with 12 working hours, which
need to be considered twice to calculate the total number of worked shifts per roster.

Table 2 Example of a roster with seven days and three physicians.

Physician ‘ Mon Tue Wed Thu Fri Sat Sun
Physicianl | L[1] L[2] NI[1] - - E/L[1] E/L[1]
Physician2 | N[2] N3] - - - NI[3] NI[2]
Physician3 - E[1] - L[2] NI[1] - -

4 Integer Programming Formulation

In this section, the proposed integer programming formulation is presented, consider-
ing the hard and soft constraints for the PRP. Several IP formulations can be found in
the literature regarding staff rostering. Interested readers are referred to [1] and [15]
for a general overview of common constraints for personnel rostering and complexity
analysis.

Table 3 presents the indices (first column) used to identify variables associated
with the constraint on the formulation. The second column describes the constraints,
the third column (Id) is the identifier, and the last column presents the weight for
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the violation of the constraint. For example, in the objective function in Eq. 1 the
first term agl,ska)1 refers to the variables related to the minimum number of physicians
violation (identified by index 1 in Table 3) multiplied by its respective weight @'
(10000). The other constraints follow the same idea.

Table 3 Soft constraints indices used to associate each constraint with its respective variable in the for-
mulation. For each index is presented a description and its weight.

Index  Constraint Description Id  Weight
1 Minimum number of physicians S1 10000
2 Maximum number of physicians S2 10000
3 Maximum consecutive assignments to the same shift S3 15
4 Maximum consecutive assignments (worked days) S4 30
5 Physician undesired working day/shift S5 10
6 Complete weekend S6 30
7 Minimum number of assignments over the planning horizon S7 20
8 Maximum number of assignments over the planning horizon S8 20
9 Maximum number of working weekends S9 30

Table 4 presents the sets, decision and auxiliary variables employed in the formu-
lation. The objective function minimizes the cost associated with the violation of the
soft constraints. Equations 2 to 22 are the constraints.

Table 4: Indices, sets and variables used in the mathematical formulation.

Symbol Definition

Input Data

neN n is the index of the physician, and N is the set of physicians;

deD d is the index of the day, and D is the set of days;

deD d is the index of the weekend day or holiday, and D is the set of
weekend days and holidays;

ses s is the index of the shift, and {1,2,3} € S is the set of shifts, where
1 corresponds to Early, 2 to Late and 3 to Night;

ke K k is the index of the location, and {1,2,3} € K is the set of loca-
tions, where 1 corresponds to Emergencyl, 2 to Emergency2 and
3 to Emergency3;

Iy € {0,1} L 1s the index of the allowed location k for physician n. Consider-
ing the case in which Physicianl is allowed to work on Emergencyl
and Emergency2, and the problem’s input has three locations. The
vector for physicianl is I,y = {1,1,0} and represents that the Physi-
cianl can work at location Emergencyl and Emergency2 and is not
allowed to work at Emergency3.

(n,d,s) €R  set containing triples with the day d, shift s for physician n that they

are not available to work. R = {n,d, s}, for example, R = {1,2,2}
means Physicianl is not available to work on day 2, shift 2 (Late
shift).
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(n,d,s) €U

weWw
i
Oy

i
n

set containing triples with the undesired working day d, shift s for
physician n. U = {n,d, s}, for example, U = {1,2,3} means Physi-
cianl prefers to avoid working on day 2, shift 3 (Night shift).

set containing the pairs of invalid shift successions § = {s,s"}, for
example, § = {3,1} means that a Night shift cannot be followed by
an Early shift;

w is a Saturday index and W the set of all Saturdays indices;

limit of soft constraint i € 1,2, that is, minimum and maximum num-
ber of physicians per day d, shift s, location k;

limit of soft constraint 3,4,7, 8,9, that is, maximum consecutive as-
signment to the same shift, maximum consecutive working days,
minimum/maximum number of assignments over the schedule pe-
riod, and maximum working weekends, for physician n;

weight for violating the lower and upper limits of soft constraint i
for nurse n.

Decision Variables

Xnask € {0,1} 1if physician n is allocated to shift s, day d, and location k, O other-

an G {0’ l}
Znd € {Oa 1}
Ond € {0, 1}

wise;

1 if physician n works at weekend w, 0 otherwise.

1 if physician n works on day d, during both day shifts, O otherwise.
1 if physician n is allocated to work on day d, 0 otherwise.

Auxiliary Variables

afisk € N*
cild e N*
gids € N*
ns, € N*

jheN*

number of violations of the soft constraint i € (1,2) for day d, shift
s, location k;

number of violations of the soft constraint i € (3,4) for physician n
on day d;

number of violations of the soft constraint 5 for physician n on day
d, shift s;

number of violations of the soft constraint 6 for physician n on
weekend w;

number of violations of the soft constraint i € (7..9) for physician n.

Before the solving method starts, a file is read containing the border data from
the previous month, that is, the total number of assignments, last assigned shift type,
number of consecutive assignments of the last shift type, and number of consecutive
worked days. These data are necessary to calculate the constraints: minimum/maxi-
mum number of assignments, maximum number of working weekends, invalid shift
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type succession (hard constraint), maximum number of consecutive assignments on
the same shift, and maximum number of consecutive working days, respectively.
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yuw € {0,1} YneN,weWw (20)
zna € {0,1} VneN,deD 3))
ona € {0,1} VneN,d €D (22)

Constraints 2-9 are the hard constraints. Constraints 2 ensure a physician can be as-
signed to at most one shift per day during weekdays. Constraints 3 and 4 ensure that
a physician must be assigned to both day shifts, or one Night shift, or none shift
on weekends and holidays. Constraints 5 stores in a auxiliary variable o, if physi-
cian n works on day d. Constraints 6 ensure a shift type succession must belong to
a valid succession (for example, a Night shift cannot be followed by an Early shift).
Constraints 7 ensure a physician must be allowed to work in the required location.
Constraints 8 ensure a physician is scheduled only if they are available. Constraints
9 ensure a physician that is working on a day shift on weekends and holidays work
both shifts on the same location.

Constraints 10 calculate the minimum number of physicians violations. Con-
straints 11 calculate the maximum number of physicians violations. Constraints 12
calculate the maximum number of consecutive assignments to Night shifts violations.
Constraints 13 calculate the maximum consecutive assignments (worked days) vio-
lations. Constraints 14 calculate the undesired worked day or shift violations. Con-
straints 15 calculate the complete weekend violations. Constraints 16 calculate the
minimum number of assignments over the scheduling period violations. Constraints
17 calculate the maximum number of assignments over the scheduling period vio-
lations. Constraints 18 calculate the maximum number of working weekends viola-
tions. Constraints 19-22 define the decision variables as binary.

5 Fix-and-optimize matheuristic for the PRP

The use of hybrid methods, which combine mathematical programming with heuris-
tics, such as the F&O matheuristics, has grown in the last years. The proposed algo-
rithm was adapted from a previous version employed to address the NRP [18]. In this
section, the F&O matheuristic developed to solve the PRP is detailed.

First, a feasible solution is generated employing a solver and only considering
the hard constraints. Then, iteratively a subset of variables are fixed to their current
values, and the solver is employed to optimize the resulting subproblem. All hard and
soft constraints are considered when the subproblem is solved.

Algorithm 1 receives several parameters where kMax {Day, Physician, Week,
Shift} represent the maximum number of free variables of each type and kLimit { Day,
Physician, Week, Shift} are the limits of permutations generated by each type of
neighborhood. For instance, considering that there are 5 physicians and kPhysician=1,
it is possible to generate 5 types of free physicians to optimize: PhysicianFreePer-
mutationSet([1], [2], [3], [4], [5]). However, if kPhysician=2 there are 10 possibili-
ties: PhysicianFreePermutationSet([1,2], [1,3], [1,4], [1,5], [2,3], [2,4], [2,5], [3,4],
[3,5], [4,5]). If kLimitPhysician=35, only 5 items will be randomly added to the set
PhysicianFreePermutationSet. If the kLimitPhysician > 10 all the possible permuta-
tions will be added to the set PhysicianFreePermutationSet.
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Algorithm 1: Fix-and-optimize matheuristic algorithm.

1 FixAndOptimize(kMaxWeek, kLimitWeek, kMaxShift, kLimitShift, kMaxDay, kLimitDay, kMaxPhysician,
kLimitPhysician, TL, STL);

2 x = generatelnitialSolution();

3 kWeek = kShift = kDay = kPhysician = 1;

4 do
5 x = fixByDay(x, kDay, kLimitDay, STL);
6 kDay = kDay+1;
7 x = fixByPhysician(x, kPhysician, kLimitPhysician, STL);
8 kPhysician=kPhysician+1;
9 x = fixByWeek(x, kWeek, kLimitWeek, STL);
10 kWeek=kWeek+1;
11 x = fixByShift(x, kShift, kLimitShift, STL);
12 kShift=kShift+1;
13 if (kDay > kMaxDay) kDay = 1;
14 if (kPhysician > kMaxPhysician) kPhysician = 1;
15 if (kWeek > kMaxWeek) kWeek = 1;
16 if (kShift > kMaxShift) kShift = 1;
17 while 7L;
18 return X;

Algorithm 1 starts generating an initial feasible solution x (line 2) considering
only the hard constraints using a MIP solver. The number of free variables to optimize
is initialized with one (line 3), and the loop (lines 4 to 17) is iterated until the time
limit (TL) is reached.

Inside the loop (lines 5 to 16), the algorithm calls different neighborhoods. Each
neighborhood is explored until finding a local minimum, or it reaches the STL (sub-
problem time limit). For each step, the value of k{Day, Physician, Week, Shift} is in-
creased by 1. If the limit of each type is exceeded the variables are reset to 1 (lines 13
to 16).

Algorithm 2 starts generating the permutations of the physicians that will be free
to be optimized, until the kLimitPhysician is reached (function permutation at line 2).
The loop (lines 4 to 16) is iterated until no improvement of 20% is found. The loop
starts storing the current solution value and the best neighbor value (function OFV
lines 5 and 6). The nested loop (lines 7 to 14) explores the neighborhood fixing the
entire problem (line 8), and unfixing only the free variables that will be optimized
(line 9). The MIP solver is called and executed until the optimal solution is found or
STL is reached (line 10). If the Objective Function Value (OFV) of the subproblem x
is lower than the OFV of the best neighbor (line 11) the bestNeighborValue variable
is updated (line 12).

Tables 5 and 6 detail an iteration of a fix by physician neighborhood with kPhysi-
cian = 1 and kPhysician = 2, respectively. The rows (Physicians) in gray are free to
be optimized by the solver. Since the fix by week, fix by shift and fix by day follow the
same idea, the pseudo-code of these algorithms were omitted.

6 Computational results
The source-code was written in Java and compiled with OpenJDK 1.8. The experi-

ments were conducted on an Intel Core i5-2410M CPU @ 2.30GHz x2 with 6GB of
RAM memory running Linux Mint 17.2 64-bits. The solver employed was CPLEX
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Algorithm 2: Fix by physician.

1 FixByPhysician(x, kPhysician, kLimitPhysician, STL);

2 physicianFreePermutationSet[] = permutation(kPhysician, kLimitPhysician);
3 improved = false;

4 do

currentSolutionValue = OFV(x);

6 bestNeighborValue = OFV(x);

7 foreach Integer(] free : physicianFreePermutationSet do

8

9

n

fixAll(x);

unFix(free, x);

10 solve(x, STL);

11 if OFV(x) < bestNeighborValue then

12 ‘ bestNeighborValue = OFV(x);

13 end

14 end

15 improved = bestNeighborValue*1.2 < currentSolutionValue;
16 while improved;

17 return X;

Table 5 Fix by physician (kPhysician=1). Table 6 Fix by physician (kPhysician=2).

Physician | Mon  Tue  Wed Physician | Mon  Tue  Wed
P1 L[1] L[2] N[2] P1 L[1] N[2] NI[2]
P2 N[1] N[1] N[3] P2 N[2] N[1] NI[3]
P3 - E[3] - P3 - E[3] -

1 1
P1 L[1] N[2] N[2] Pl L[1] N[1] NI[2]
P2 N[1] N[1] N[3] P2 N[2] L[1] N3]
P3 - E[3] - P3 - E[3] -
1 1
P1 L[1] N[2] N[2] N1 L[1] N[1] NI[2]
P2 N[2] N[1] N3] N2 E[2] L[1] NI[3]
P3 - E[3] - N3 E[3] E[3] -

version 12.6.2. The default CPLEX parameters were used. The gap (last column of

Table 7) is calculated using the equation gap = 100 x (MIP — F&O) /min(MIP,F &O),
MIP and F&O mean the objective function value (OFV) of the fifth and seventh

columns in Table 7.

The dataset employed in the experiments were generated based on the data pro-
vided by HCPA. The algorithm was tested in 30 generated instances. Currently, the
real number of physicians to schedule is 50. However, the number of physicians will
increase in the future, that is the reason for generating larger instances. The objec-
tive is to analyze whether they still can be solved using the proposed methods. The
following instances were generated, namely:

— 10 instances with 50 physicians and 4 weeks;
— 10 instances with 100 physicians and 4 weeks;
— 10 instances with 150 physicians and 4 weeks.

The time limit for each experiment was fixed according to the instance size and
algorithm:
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— One single long run using the MIP solver with time limit of 12h;
— 10 runs using the MIP solver with different seeds, considering time limit of 20, 40

and 60 minutes for the instances with 50, 100 and 150 physicians, respectively;

— 10 runs using F&O Matheuristic with time limit of 10, 20 and 30 minutes for the
instances with 50, 100 and 150 physicians, respectively;

Table 7 details the results. The first column presents the Instance Id, the second
column presents the MIP solver LB (lower bound) within a time limit of 12h, the
third column presents the OFV obtained by the MIP solver, and the fourth column

presents the relative GAP provided by the MIP solver.

Table 7 Results for PRP instances with 50, 100 and 150 physicians.

MIP  Single Run MIP AVG 10 runs Std. AVG 10runs  Std. MIP vs F&O
Instance LB MIP 12h  Gap(%) MIP Dev. F&O Dev. Gap(%)
p050_inst_01 30,305 30,305 0.00 30,305 0 30,365 8 0.20
p050_inst_02 30,460 30,460 0.00 30,460 0 30,500 10 0.13
p050_inst_03 30,505 30,505 0.00 30,505 0 30,575 25 0.23
p050_inst_04 30,965 30,965 0.00 30,965 0 30,985 14 0.06
p050_inst_05 30,685 30,685 0.00 30,685 0 30,695 18 0.03
p050_inst_06 31,705 31,705 0.00 31,705 0 31,755 18 0.16
p050_inst_07 30,015 30,015 0.00 30,015 0 30,025 24 0.03
p050_inst_08 30,215 30,215 0.00 30,215 0 30,275 24 0.20
p050_inst_09 31,670 31,670 0.00 31,670 0 31,670 20 0.00
p050_inst_10 30,765 30,765 0.00 30,765 0 30,805 29 0.13
average 0.00 0.12
pl00_inst_01 24,429 25,525 429 26,320 8,678 25,845 57 -1.84
pl00_inst_02 26,720 27,945 4.38 29,940 102,042 28,435 58 -5.29
pl100_inst_03 25,082 26,300 4.63 175,395 115,256 26,650 68 -558.14
pl100_inst_04 24,280 25,285 3.97 66,040 150,074 25,515 75 -158.83
pl00_inst_05 24,633 25,775 4.43 28,615 16,339 26,060 72 -9.80
pl00_inst_06 25,660 26,920 4.68 28,960 12,819 27,130 51 -6.75
pl00_inst_07 23,205 24,505 5.31 26,075 971 24,870 84 -4.85
pl100_inst_08 25,282 26,445 4.40 97,175 103,925 26,770 90 -263.00
pl00_inst_09 25,946 27,130 4.36 48,620 90,774 27,560 76 -76.42
pl00_inst_10 23,775 25,030 5.01 28,185 43,730 25,430 135 -10.83
average 4.55 -109.57
p150_inst_01 55,742 60,030 7.14 33,866,360 12,053,710 61,425 158 -55,034.49
pl50_inst_02 54,011 58,320 7.39 28,101,150 12,667,878 60,110 202 -46,649.54
pl50_inst_03 54,135 58,070 6.78 5,985,325 12,871,189 59,625 228 -9,938.28
p150_inst_04 53,457 57,595 7.18 28,062,400 12,378,134 59,090 235 -47,390.95
p150_inst_05 54,786 59,740 8.29 33,867,280 13,946,338 90,540 202 -37,305.88
p150_inst_06 54,170 58,720 7.75 5,563,180 10,155,870 69,920 238 -7,856.49
p150_inst_07 53,959 57,570 6.27 12,057,155 10,809,383 59,255 282 -20,247.91
pl50_inst_08 53,199 56,750 6.26 7,150,135 10,581,572 59,120 218 -11,994.27
p150_inst_09 53,396 57,580 7.27 33,868,180 11,909,774 57,085 374 -59,229.39
p150_inst_10 51,782 55,810 7.22 7,480,425 11,897,493 57,148 245 -12,989.68
average 7.15 -30,863.69

The fifth column presents the average OFV obtained by the MIP solver when
running with the time limit of 20, 40 and 60 minutes for the instances with 50, 100 and
150 physicians, and the sixth column the respective standard deviation. The seventh
column presents the average OFV obtained by the F&O matheuristic, and the eighth
column the respective standard deviation. The F&O matheuristic time limit was 10,
20 and 30 minutes for the instances with 50, 100 and 150 physicians, respectively. The
last column presents the relative gaps of the results obtained by 10 runs employing

the MIP solver compared to 10 runs using the F&O matheuristic.
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As can be observed, at the third and fourth columns, within a limit of 12h, the
MIP solver solved to the optimality all instances with 50 physicians. The instances
with 100 and 150 physicians were solved near-optimal, with average relative gaps of
4.55% and 7.15%, respectively.

When the time limit of the MIP solver is decreased (fifth and sixth columns), only
the instances with 50 physicians were solved to optimality. The instances with 100
and 150 physicians have a huge standard deviation, and the MIP solver was unable
to generate good results employing the proposed IP formulation. The results of the
F&O matheuristic (seventh and eight columns) detail that even with the half of the
time compared to the MIP solver, the algorithm generated good results. Near-optimal
results were obtained employing the instances with 50 physicians and better results
compared to the MIP solver using the instances with 100 and 150 physicians.

7 Conclusions

This paper presented an integer programming formulation and a F&O matheuristic
for the PRP. Moreover, a comparison between the constraints present in the INRC-II
instances and the studied physician rostering demonstrate the similarities and differ-
ences between the problems.

The computational experiments demonstrate that the MIP solver could solve the
small instances with 50 physicians to the optimality. For larger instances, with 100
and 150 physicians, the MIP solver only generated good results when the time limit
was increased to 12h, using the proposed IP formulation.

The proposed F&O matheuristic generated good results within short time limits.
Results near-optimal were generated for instances with 50 physicians in 10 minutes.
Moreover, employing instances with 100 and 150 physicians, even with acceptable
computational time limits (20 and 30 minutes), the F&O matheuristic generated good
results.

The primary contributions of this work are an integer programming formulation
for a real-world PRP, extensions to the INRC-II instances to attend specific PRP
constraints and a F&O matheuristic that generated good results within short time
limits. Logs of the executions, instances, and results are available on-line!.

Future research will consider the implementation of the proposed integer pro-
gramming formulation and the F&O matheuristic using an open-source solver.
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