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Abstract We describe the design and implementation of a course scheduling sys-
tem with the primary objective of assigning non-overlapping timeslots to pairs of
courses taught by the same instructor or likely to be needed (or desired) by a
common set of students, including course pairs in different academic programs. A
secondary objective is to create compact schedules for both faculty and students.
Our system models the timetabling problem as a vertex coloring of a weighted
graph. We present three coloring algorithms for this graph model: an exact mixed-
integer programming formulation and two approximate algorithms. We evaluate
the performance of the three algorithms on a set of randomly generated test prob-
lems derived from actual course schedules at Rollins College. Results show that
the heuristic algorithms are competitive with the mixed-integer program and have
significantly shorter run times. In comparison with an actual Rollins course sched-
ule, our system reduced the number of conflicts by roughly one half, and created
more compact schedules for faculty and students.
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1 Introduction

We describe the design and implementation of a course timetabling system for
Rollins College. Constructing feasible and practical course schedules that meet the
needs of faculty and students is a significant challenge for colleges and universities.
Clearly, courses taught by the same instructor must be assigned non-overlapping
timeslots. However, there are many other pairs of courses that are required (or
desired) by the same set of students in the same semester, and a number of these
course pairs will involve different departments when majors in one department
elect to minor in another. For example, at Rollins, there are several economics
majors who also minor (or double major) in mathematics.
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The core model underlying our system is a weighted graph with two-component
edge weights, extending the models used in [19,11,29]. Each vertex in the graph
represents a section of a course, with a set of acceptable timeslots and acceptable
rooms. Edges correspond to course pairs that are likely to have students and/or
faculty in common or require the same special resource, such as a lab or classroom.
The timetabling construction is then modeled as a vertex coloring of the resulting
graph.

The two-component edge weights correspond to the two objectives of our
model. The first, the conflict penalty, is incurred when the endpoints are assigned
overlapping timeslots. High conflict penalties (i.e., heavy edge-weights) correspond
to pairs of courses that are either taught by the same faculty member or demanded
by large numbers of students in the same semester. The second objective, the prox-
imity penalty, is incurred when the endpoints are assigned timeslots having a large
gap on the same day. Thus, our model incorporates two objectives related to
key aspects of the scheduling problem: minimizing conflict and creating compact
schedules.

In order to determine which course pairs correspond to adjacent vertices, and
the size of the edge-weights, we conducted a survey of the faculty. For each course,
faculty members were able to specify a list of acceptable timeslots, a list of ac-
ceptable rooms, and a list of courses that should not be scheduled in overlapping
timeslots, along with the perceived severity of each potential conflict. These per-
ceived severities were converted to edge weights that then became the input data
for our graph model.

Research into automated course timetabling has a long history. See [21,23,9,26,
12] for relevant surveys. Many approaches, including heuristic graph coloring [30,
16,19,5,6,11] and metaheuristic algorithms based on local search and evolutionary
computation [1,14,4,27,7,17,3], have been used to create course schedules.

This paper consists of the following sections:

1. A description of the implementation of the dual-objective weighted graph
model from faculty survey information (Section 2)

2. Presentation of three approaches to finding suitable colorings for these graphs:
an exact mixed-integer programming (MIP) formulation (Section 3.1), a one-
pass (Section 3.2) and a tree-based beam search (Section 3.3). The two heuristic
algorithms are augmented by a post-construction repair phase that improves
the initial schedule (Section 3.4).

3. An evaluation of these approaches using a randomized set of test problems
created using actual course schedules at Rollins College as seeds for the ran-
dom generation (Section 4.1-4.2). Our results show that the MIP produces
the highest-quality schedules, as expected, but suffers from highly variable run
times. The differences in the numbers of conflicts produced by the three al-
gorithms are small. In particular, the additional conflicts and higher schedule
gaps produced by the approximate algorithms affect only a small number of
faculty and students.

4. An examination of the performance of our system on a real course timetabling
problem: the construction of the Fall 2017 Science Division schedule at Rollins
College (Section 4.3). By comparison to the actual schedule produced by con-
ventional ad-hoc methods, we show that our system produces approximately
50% fewer conflicts and creates more compact schedules for instructors.
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2 A Dual-Objective Weighted Graph Model

2.1 Timetabling as a Graph Coloring Problem

Timetabling algorithms based on graph coloring have a long history, for example
[30,16,19,5,12,6,23]. These models treat each event to be scheduled as a vertex in
a graph, with edges representing possible conflicts between event pairs. A proper
coloring of the graph assigns a color to every vertex so that adjacent vertices
receive different colors.

Our model combines the conflict and proximity penalties into a weighted sum,
described in more detail below, representing the total penalty incurred across the
entire schedule. An alternate approach would be to formulate the problem as a
true multi-objective optimization problem, as in [15,13]. For the purposes of our
system, the single objective form integrates better with the heuristic algorithms
discussed in Section 3.

2.2 Conflict and Proximity Objectives

Figure 1 shows an example four-course graph where each edge carries two weights.
The first weight corresponds to the conflict penalty that is incurred if the two end
points of the edge are assigned to overlapping timeslots.

Continuous-valued conflict penalties are possible, but we have found it helpful
in our discussions with other faculty and administrators to classify course conflict
penalties into three categories:

– Heavy, representing prohibitive conflicts, such as two courses taught by the
same instructor or courses required in the same semester by all students in a
major.

– Medium, representing conflicts that are not prohibitive but desirable to avoid,
such as introduction to physics and introduction to computer science.

– Light, conflicts that affect only a small number of students, but are still known
to regularly occur.

The example of Figure 1 uses weights of 400, 25, and 1 for the three categories,
respectively. The choice of conflict-weighting scheme is adjustable as a parameter
in our system.

Fig. 1 An four-course graph with dual-weighted edges
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The second weight, the overlap factor, is used in the calculation of the proxim-
ity penalty. Since we desire to create compact schedules for the greatest number
of students and faculty, it is reasonable that gaps between courses with several
members in common should make a greater contribution to the proximity penalty
than courses that have few members in common. The overlap factor quantifies
this.

For each course pair (v1, v2), the proximity penalty incurred is given by

p(v1, v2) = overlap(v1, v2) · gap(v1, v2) (1)

where gap(v1, v2) returns the time difference between the assigned timeslots for
courses v1 and v2. Thus, courses that have few students or faculty in common
contribute little or nothing to the proximity penalty.

In Figure 1, Linear Algebra and Calculus 3 have a heavy conflict penalty of
400 and a high overlap factor of 30, because they are typically taken in the same
semester by all math majors. Computer Science 1 and Computer Science 2 have
a heavy conflict penalty, but no overlap factor; this indicates that they are not
taken by the same group of students, but might share a required resource, such as
a computer lab.

Determining the overlap factors is straightforward if the enrollment for every
course is known before the schedule is constructed, as is the case in most U.K.
institutions. At U.S. institutions, the overlap factors must be obtained by analyzing
historical cross-enrollment data to determine the number of students that are likely
to register for a given pair of classes. This is the approach we followed to create a
seed for our randomized test problems, discussed in Section 4.1.

In addition to the two-component weights assigned to each edge, each vertex
in our model maintains a list of color-penalty pairs, with one entry for each color.
For a vertex v, the color-penalty pair list has the form

[(ηv1 , ν
v
1 ), (ηv2 , ν

v
2 ), . . . , (ηvc , ν

v
c )]

where ηvi and νvi keep track of the conflict and proximity penalties, respectively,
that will be incurred if color i is assigned to vertex v.

During the coloring process (described in more detail in Section 3), the vertex
color-penalty vectors track the potential effects of each possible color assignment.
Each time a vertex is colored, the color-penalty pairs of all its neighbors are up-
dated, reflecting the conflict and proximity penalties that now exist with respect
to the newly colored vertex. This approach allows for rapid calculation of the cost
of each color assignment at every step in the coloring.

In some cases, a color i may be inherently unsuitable for vertex v, but not
prohibited outright. For example, a faculty member may agree to teach in early
morning timeslots, but only if no better options are available . This feature may
be implemented by setting the conflict penalty element ηvi to a nonzero initial
weight reflecting the severity of the unsuitability. The proximity penalty elements
νvi are solely determined by the color assignments of the neighbors of v, so they
are always set to 0 at the beginning of the coloring process.
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3 Constructing Schedules by Graph Coloring

3.1 Mixed-Integer Programming

Tulio Toffolo proposed a mixed-integer programming (MIP) formulation for the
dual-objective weighted graph model described in Section 2 [28]. The model rep-
resents the assignment of a particular course section to a particular room in a
particular timeslot as a binary decision variable, with penalties that are incurred
if courses are assigned to overlapping timeslots.

min
∑

i∈E

∑

c∈Ci

∑

r∈Ri

αicrxicr +
∑

i∈E

∑

j∈Ei

∑

c∈Ci

∑

d∈Cj

βijcd yijcd +
∑

(c,d)∈S

∑

r∈R

γzcdr

s.t.
∑

c∈Ci

∑

r∈Ri

xicr = 1, ∀i ∈ E
∑

r∈Ri

xicr +
∑

r∈Rj

xjdr − yijcd ≤ 1, ∀i ∈ E, j ∈ Ei, c ∈ Ci, d ∈ Cj

∑

i∈Ecr

xicr +
∑

i∈Edr

xidr − zcdr ≤ 1, ∀(c, d) ∈ S, ∀r ∈ R

xicr ∈ {0, 1}, ∀i ∈ E, ∀c ∈ Ci, ∀r ∈ Ri

yijcd ∈ {0, 1}, ∀i ∈ E, j ∈ Ei, c ∈ Ci, d ∈ Cj

zcdr ≥ 0 and integer, ∀(c, d) ∈ S, ∀r ∈ R

where

E = the set of courses

Ei = the set of courses that have non-zero conflict severity with course i

Ecr = the set of courses for which color c and room r are suitable

Ci = the set of acceptable colors for course i

Ri = the set of acceptable rooms for course i

αicr = inherent penalty of assigning color (timeslot) c and room r to course i

βijcd = penalty for assigning course i to color c and course j to color d

γ = penalty for double-booking a room

xicr = 1 if course i is assigned color c and room r, 0 otherwise

yijcd = 1 if i is assigned color c and j is assigned color d, 0 otherwise

zcdr = number of times room r is assigned overlapping colors c and d

The first component of the objective function captures the inherent unsuit-
ability of timeslot c and room r for course i. The second captures the conflict and
proximity penalties of assigning two courses i and j to timeslots c and d. The third
component penalizes double-booking room r overlapping timeslots c and d.

The first constraint ensures that each course is assigned only one room and
timeslot. The second forces yijcd = 1 when courses i and j are assigned colors c
and d, respectively; this incurs penalty βijcd. The third forces zcdr = 1 if room r
is double-booked in timeslots c and d, incurring penalty γ.
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Algorithm 1 One-Pass Scheduler
Input:
G the uncolored weighted graph representing the timetabling problem
Hv the vertex-selector heuristic parameters
Hcr the color-selector and room-selector heuristic parameters

while there are uncolored vertices do
v ← selectV ertex(G,Hv)
(color, room)← selectColorAndRoom(v,G,Hcr)
assign (color, room) to v

Despite the advantages of an exact MIP, there are still reasons to investigate
approximate algorithms. In particular,

– The run time of the MIP is highly variable: four of the ten problems in our
test set require at least one hour of solution time and one requires almost three
hours. Section 4.2 discusses these results in more detail.

– The efficiency of the scheduler depends on the power of the underlying MIP
solver, but not all organizations performing scheduling have access to high-
quality commercial solvers.

– Our work with the College’s Registrar has shown that schedule always requires
a series of post-construction edits to deal with shifts in faculty preferences and
unexpected changes. In previous work, this editing process was enhanced by re-
running the scheduler to evaluate the impact that each potential change would
have on the overall schedule [29]. Even run times on the order of minutes (the
fastest achieved by the MIP on our randomized test problems) are too slow to
support this process.

3.2 One-Pass Greedy Search

Our two search algorithms treat the graph coloring process as a state-space search,
where nodes in the state-space tree represent partial colorings of the graph, the
root node represent the initial uncolored graph, and leaf nodes represent completed
colorings. Figure 2 depicts an example of such a search tree.

The ultimate goal of the state space search is to identify the leaf node having
minimal penalty: this node represents the best available coloring, and hence, the
best possible schedule. However, a complete examination of all possible leaves is
impossible outside of trivial cases. Therefore, practical search strategies must rely
on heuristics.

The simplest heuristic for creating a coloring is the one-pass approach, which
begins at the root and works to a single leaf, choosing one vertex to color at each
step [29]. At each step, the method selects a “troublesome” vertex that is likely
to cause difficulty if its coloring is deferred until later in the scheduling process.
For example, a vertex of high degree is likely to be hard to color if most of its
neighbors have already been colored. The algorithm chooses a timeslot and room
assignment that seem best with respect to both the current incomplete schedule
and the remaining uncolored vertices. These steps repeat until all vertices have
been colored. Algorithm 1 summarizes this procedure.
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Fig. 2 An example search tree over possible graph colorings

Designing an effective greedy algorithm requires balancing choices that are
optimal with respect to the current in-process coloring against the need to leave
scheduling options open for vertices that have yet to be colored. Previous work has
explored using combinations of heuristics to identify both troublesome vertices and
make good color assignments [10]. These heuristics are based on intrinsic properties
of the weighted graph, such as the density of edges or the number of acceptable
colors at a given vertex.

3.3 Beam Search

The one-pass strategy is limited in that it generates only one path to a complete
coloring without backtracking. We extended the one-pass system by incorporating
a beam search approach that allows for both branching and backtracking [24].

The beam search algorithm maintains a fixed-size priority queue of partial
colorings [2]. At each step, the algorithm selects the most promising partial coloring
from the queue and expands it by generating a set of successor colorings, each of
which includes one more colored vertex. If each expansion step selects Nv vertices
and assigns each vertex one of Nc colors, the total number of successors (i.e., the
branching factor) is NvNc.

These successors are scored by a priority function and inserted into the queue.
If necessary, the least-promising colorings are pruned to keep the queue length
within a fixed limit. The beam search can thus be considered a limited-memory
variant of the traditional A* search, where the “best” node (as chosen by some
priority function) is expanded at each iteration, but only a fixed-size subset of the
most promising nodes are maintained in memory [22].

The principal challenge of the beam search implementation is selecting a good
priority function for ordering the queue of partial colorings. Intuitively, a promising
coloring is one that is likely to lead to a leaf (that is, a completed coloring) with
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Algorithm 2 Beam Search Scheduler
Input:
G the uncolored weighted graph representing the timetabling problem
queue an initially-empty priority queue of partial colorings
P the priority function
L maximum priority queue length
Nv number of vertices to choose and expand on each iteration
Nc number of color-room combinations to apply to each expanded vertex
Hv the vertex-selector heuristic parameters
Hcr the color-selector and room-selector heuristic parameters

queue.setPriorityFunction(P )
queue.push(G)

while true do
g ← queue.pop()
if g is a complete coloring then

return g

for 1 to Nv do
v ← selectV ertex(v, g,Hv)
for 1 to Nc do

(color, room)← selectColorAndRoom(v, g,Hcr)
g′ ← assign (color, room) to v in partial coloring g
queue.push(g′)

if queue.length > L then
remove all but L most promising partial colorings from queue

low total penalty. As in traditional A*, the priority function may be decomposed
into two parts:

– The current penalty accrued by the incomplete partial coloring
– An estimate of the difficulty of completing the coloring

[24] introduced a set of heuristics based on properties of the graph model, similar
to the heuristics used in the one-pass vertex-selection, to estimate the difficulty of
completing a given partial coloring.

Algorithm 2 summarizes the beam search procedure.

3.4 Repair and Improvement Phase

Initial solutions generated by approximate algorithms can often be improved by
a applying a local search heuristic to the completed schedule [8]. Because the
approximate algorithms must consider the effects of timeslot and room assignments
on other courses, they produce looser, more conservative schedules with larger gaps
than those generated by the MIP.

Our current implementation uses a randomized hill-climbing search for repair
and improvement. At each step, the system randomly selects a course section,
with the selection weighted so that sections with higher penalties are more likely
to be selected. It then considers alternate timeslot and room assignments for the
selected course, and, if possible, selects one that reduces the overall penalty of
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the complete schedule. This process repeats until the schedule converges and no
further improvement is possible.

This technique, like all hill-climbing methods, is fast, easy to implement, and
is guaranteed to produce a result at least as good as the starting schedule. In our
experiments, the search procedure typically improves the initial penalty scores of
the one-pass scheduler by 20-30% and the beam search scheduler by 10-20%.

Hill climbing lacks flexibility, however, because it cannot trade a short-term in-
crease in penalty for a larger long-term decrease. Other methods, such as simulated
annealing, have more flexibility and might result in greater overall improvement
[20]. Investigating more sophisticated improvement algorithms is a subject of our
future research.

4 Experimental Comparisons

4.1 Generating Random Test Problems

To test the effectiveness of our three proposed solution algorithms, we obtained the
complete College schedules for each of the last five semesters, including records on
student cross-enrollments in each pair of courses. Each complete schedule contains
approximately 650 individual course sections with more than 300 instructors meet-
ing in more than 150 distinct meeting times (e.g., MWF 8:00-8:50, MW 8:00-9:15,
etc.).

Using this data as a seed, we generated a set of randomized test problems for
our experimental comparisons. Each course is given a random set of five acceptable
rooms drawn from the same building as its assigned room, and a set of up to
five acceptable timeslots meeting the same days for the same number of contact
hours as its original assigned timeslot. To simulate variability in enrollments across
semesters, we also randomized the conflict penalties and overlap factors on the
edges between pairs of courses, with a small probability of introducing edges among
previously non-adjacent pairs or deleting existing edges. To maintain feasibility,
the original assigned rooms and timeslots were maintained as acceptable options
for every course.

4.2 Performance of the Three Algorithms

Tables 1, 2, and 3 summarize the performance of the three algorithms (including
the hill climbing repair and improvement phase) on 10 randomized problems. Each
table reports the final penalty function value (a weighted sum of both the conflict
and proximity scores) obtained by the three algorithms on each problem, as well
as the number of heavy, medium, and light conflicts and the number of courses
lacking assigned rooms at the end of the scheduling process.

Both heuristic algorithms produce zero heavy conflicts. This is encouraging,
since a heavy conflict would represent a prohibitive violation that makes the sched-
ule non-viable. As expected, the MIP achieves lower total penalties than both the
one-pass and beam search schedulers; its final penalty scores are consistently 20-
30% lower than the corresponding one-pass scheduler penalties. Only one course
(out of 6580 scheduled across the 10 trials) is left with an unassigned room by
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Table 1 Results of the MIP scheduler on 10 randomized problems

Problem Total
penalty

Heavy
conflicts

Medium
conflicts

Light
conflicts

Unassigned
rooms

Run time
(seconds)

1 12503 0 1 52 0 6570
2 13386 0 2 40 0 513
3 14050 0 4 46 0 10748
4 13456 0 1 50 0 790
5 15088 0 6 38 0 475
6 15100 0 5 42 0 4406
7 15236 0 5 35 0 4226
8 15101 0 5 43 0 473
9 14027 0 4 32 0 215
10 13971 0 2 40 0 880

Table 2 Results of the one-pass scheduler on 10 randomized problems

Problem Total
penalty

Heavy
conflicts

Medium
conflicts

Light
conflicts

Unassigned
rooms

Run time
(seconds)

1 17130 0 2 58 0 2.9
2 17295 0 4 55 0 2.8
3 16941 0 5 48 0 3.0
4 18406 0 2 50 1 2.9
5 19274 0 6 56 1 2.9
6 19145 0 7 54 0 2.9
7 18621 0 5 54 0 2.9
8 21122 0 5 50 2 2.8
9 18844 0 6 38 0 2.9
10 18102 0 2 49 0 3.0

Table 3 Results of the beam search scheduler on 10 randomized problems

Problem Total
penalty

Heavy
conflicts

Medium
conflicts

Light
conflicts

Unassigned
rooms

Run time
(seconds)

1 15299 0 1 59 0 145
2 16838 0 3 53 0 124
3 17153 0 4 50 0 165
4 16135 0 2 46 0 147
5 19680 0 6 49 1 140
6 18973 0 6 55 0 147
7 18304 0 5 36 0 137
8 20084 0 6 44 0 148
9 16944 0 4 32 0 141
10 17246 0 2 59 0 128

the beam search scheduler, and only four by the one-pass algorithm. Although
unassigned rooms are not ideal, they can usually be dealt with by moving a course
to a free room in a nearby building.

Differences in the three algorithms’ conflict penalty scores, therefore, are due
to differing numbers of medium and light conflicts. As discussed in Section 2,
medium conflicts represent courses that are sometimes taken by overlapping groups
of students during the same semester, but do not rise to the level of a prohibitive
conflict—at Rollins College, an overlap of three to six students would typically
be considered a medium conflict. Light conflicts are less serious and represent a
conflict that affects only one or two students.
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Fig. 3 Numbers of medium conflicts incurred by the three scheduling algorithms

Figure 3 plots the number of medium conflicts incurred by each of the three
scheduling algorithms on each of the three test problems. In every case, the one-
pass and beam search algorithms are within two conflicts of the optimal MIP result.
Given that each medium conflict represents a problem for perhaps six students,
this suggest the additional conflicts generated by the approximate algorithms affect
no more than 10-20 students.

Figure 4 plots the number of light conflicts incurred by each of the three al-
gorithms. Here, the difference between the MIP and the approximate algorithms
is larger. On problem 7, for example, the MIP’s schedule contains only 35 light
conflicts, but the one-pass result contains 54. Light conflicts tend to occur for id-
iosyncratic reasons, such as a single student majoring in an unusual combination
of fields; some light conflicts also reflect overlaps between academic courses and
athletic practices. Still, given that each light conflict affects only one or two stu-
dents, the additional conflicts generated by the approximate algorithms affect a
group of only 20-40 students.

Figure 5 demonstrates the performance of the three algorithms on the sec-
ondary objective of creating compact schedules. The figure plots distribution of
the total length of the teaching day for all faculty members on test problem 1,
which is tied for the largest difference in total penalty between the MIP and ap-
proximate algorithms. Similar results are obtained on the other test problems.

The figure shows that all three algorithms produce similarly compact schedules.
Approximately 30% of faculty have teaching length days of 1 hour: these faculty
have no more than one section scheduled on each day. A small number have very
long days of more than ten hours: these are due to a small number of faculty
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Fig. 4 Numbers of light conflicts incurred by the three scheduling algorithms
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Fig. 5 Distribution of lengths of faculty teaching days
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Fig. 6 Run times of the three algorithms on 10 randomized problems. The one-pass algorithm
achieves run times of two the three seconds on all problems.

that must teach general education courses at reserved times in the morning and
evening courses for non-traditional students late on the same day. In practice,
faculty facing this situation typically reconfigure their schedules to teach the early
and late courses on different days, but we did not attempt to automatically apply
that optimization in our tests.

The MIP has the highest fraction of short teaching days, followed by the beam
search and then the one-pass, as might be expected. The MIP exhibits superior
performance with medium-length gaps: it is able to schedule a greater proportion
of courses in the three to six hour range than the other two schedulers, which
produce a few more six to eight hours gaps instead. Overall, though, the results
indicate that both heuristic algorithms due a reasonable job of creating compact
schedules, and are competitive with the MIP for the large majority of faculty
schedules.

Figure 6 plots the run times for each of the three solution algorithms on the
set of 10 randomly generated test problems, which shows the high variability in
MIP run times, ranging from four minutes to nearly three hours. This variability
is somewhat surprising, since the ten problems are generated according to the
same random process and are of roughly equal difficulty. Run time is not clearly
correlated with final solution penalty. Problem 3, with a run time of nearly three
hours, has the sixth highest penalty in Table 1; problem 1 has the lowest penalty
produced by the MIP but the second highest run time. Future work may seek a
clearer understanding of how the structural characteristics of the graph contribute
to high MIP run times.
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The beam search and one-pass algorithms exhibit consistent performance across
all ten problems. The beam search consistently takes two to three minutes to gen-
erate each solution and the one-pass algorithm requires only three seconds. Note
that the one-pass algorithm is so fast that it is barely visible in Figure 6. These
algorithms have been implemented in Python and, though they are efficient, have
not been optimized for performance. They would be even faster if re-implemented
in a compiled language such as C++.

4.3 Comparison to an Actual Course Schedule

Finally, we compare the results produced by our method to the actual course
timetable for the Rollins College Science Division in the fall semester of 2017.

At Rollins, course scheduling is handled at the level of academic departments.
Each department, led by its chair, creates its own schedule, including the assign-
ment of timeslots. Chairs generally have awareness of conflicts that exist in their
own program, but only rarely do they take into account potential cross-department
conflicts or students’ scheduling concerns. The resulting schedules always require
considerable manual reworking by the College registrar, particularly of room as-
signments. Science scheduling is always complicated by limitations on available
lab space and the need to avoid conflicts among introductory courses in physics,
biology, chemistry, and calculus that are frequently taken by the same groups of
students. Most natural science courses meet at least four days a week with a four
hour lab period.

We surveyed the members of our six Science Division departments—biology,
chemistry, computer science, mathematics, physics, and psychology—and asked
faculty to supply the following information for the courses offered in the Fall 2017
semester:

– The list of acceptable timeslots for each course.
– The list of acceptable rooms for each course, with an option that any sufficiently

large room in the department’s normal building was acceptable.
– The courses that, in the faculty’s perception, should not be scheduled in over-

lapping timeslots with their own courses (i.e., potential conflicts) along with
estimated severities (heavy, medium, or light).

The resulting data contained 124 total course sections taught by 44 faculty in 65
different acceptable timeslots. The faculty surveys identified 169 total heavy con-
flicts between course sections, 532 total medium conflicts, and 49 light conflicts—
most faculty did not notate light conflicts on their surveys. The courses with the
largest numbers of conflicts were introductory chemistry, biology, and physics sec-
tions, their labs, and calculus.

Table 4 summarizes the number of conflicts produced by our scheduling system
with this data, compared to the results obtained by taking the actual Fall 2017
schedule and evaluating it with respect to the survey information provided by
faculty. Run times were acceptable in all cases, including the MIP scheduler, and all
schedules contained appropriate room assignments. All three scheduling algorithms
produce results that improve upon the actual course schedule.

The optimal MIP schedule contains 7 heavy conflicts: investigation shows that
these are unavoidable, and are caused by a precalculus class and multiple sections
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Table 4 Comparison of actual and optimized Fall 2017 science schedules

Schedule Heavy
con-
flicts

Medium
conflicts

Light
conflicts

Run time
(s)

Optimal (MIP) 7 28 5 235
Beam-search 8 34 4 9
One-pass 9 39 5 1
Published 20 57 3 N/A

of a chemistry lab that have only Friday afternoon meeting times. We could likely
avoid these conflicts by providing more flexibility in the precalculus meeting times.
The actual schedule, by contrast, includes 13 additional heavy conflicts. These
include, for example, required pre-medical courses (Genetics and Microbiology)
offered at the same level by the department, but scheduled at competing timeslots.
It also includes several cross department conflicts that are likely to affect groups
of students, including organic chemistry and general biology and general biology
and calculus. Medium conflicts show similar concerns, though these are ranked as
less significant by faculty.

These results suggest that, despite our best efforts, the current scheduling
process does not minimize conflicts among related courses, even in cases where
the conflict is obvious and the courses are offered by the same department. We
have shared these results with faculty with the goal of improving our scheduling
in future semesters.

Figure 7 plots the distribution of total teaching day lengths for faculty in the
optimized MIP schedule and the actual timetable—results for the other heuristic
algorithms were qualitatively similar to the MIP. The distribution shows that more
than 30% of faculty have long teaching days of six hours or more under the actual
schedule; under the MIP results, the comparable number is only 15% and most of
these are unavoidable.

5 Related Work

[30] described the basic application of graph coloring to job scheduling and pro-
vided a bound on the number of required colors. More recently, [12] investigated
and compared several heuristic approaches on a set of real and randomly generated
exam timetabling problems and [5] described the implementation of several algo-
rithms in a spreadsheet-based decision support system. [10] introduced the concept
of color selection using linear combinations of primitive heuristics. Detailed surveys
of both algorithms and systems are available in [9,6,21,23].

In the context of this work, [19] introduced a weighted graph model that was
the predecessor of our model. [11] adapted this model to examination timetabling
and [29] applied to the 2011 Science Division schedule at Rollins. [24] introduced
the beam search algorithm and presented a comparison of the effectiveness of
different linear combinations of heuristics.

Metaheuristic algorithms based on local search are another important class of
algorithms. Local search techniques explore the search space of an optimization
problem by beginning with an initial solution and iteratively moving to neighbor
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Fig. 7 Distribution of lengths of faculty teaching days in the Fall 2017 schedule

solutions. Our system incorporates a hill-climbing-based local search as part of its
post-construction improvement phase.

[27] and [3] presented complete timetabling systems based on simulated anneal-
ing, a local search strategy that incorporates random movements [20]. [8] specifi-
cally considered the application of annealing to improve constructed schedules. [17]
applied tabu search to examination timetabling, which enhances simulated anneal-
ing by maintaining a list of “tabu” regions that the search has recently explored
and should not revisit [18]. Although our current improvement phase algorithm is
fast and effective, these methods are more sophisticated and allow the schedule to
make a short-term increase in penalty in pursuit of a larger long-term decrease.

Evolutionary and genetic algorithms are another important class of metaheuris-
tics. Inspired by natural selection, a genetic algorithm evolves a “population” of
potential solutions by repeatedly combining and mutating higher-performing can-
didate solutions and pruning lower-performing candidates [22]. Applications to
course and exam timetabling are discussed in [1,4,14,25]. [7] employed a memetic
algorithm, a hybrid approach where members of the population are allowed to
improve themselves with local search before the evolutionary process is applied.

The number of required iterations can make evolutionary algorithms slow.
One of the key goals of our project is the creation of an interactive system, so we
have chosen to focus on algorithms that have fast, predictable performance. There
remains, however, an interesting possibility of incorporating a graph-based search
algorithm, like the one-pass or beam search, into a metaheuristic framework, with
the goal of quickly exploring a large part of the search space .
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6 Conclusions and Future Work

We have described the design and implementation of a course timetabling system.
Our system includes both a primary objective of avoiding conflicts and a secondary
objective of creating compact schedules for students and faculty. Experimental
comparisons based on actual course schedules from Rollins College have shown
that the schedules produced by approximate algorithms can be competitive with
exact mixed-integer programming solutions and that our system would improve
upon the actual schedules currently being created at Rollins College.

There are several opportunities for future work. First, improving our heuristic
algorithms by exploring other approximate solution strategies, such as the tabu
search. Local search heuristics could also be applied to our post-construction repair
phase. Within the context of the one-pass and beam search algorithms, we are
interested in further exploration of heuristics for vertex and color selection. Second,
there is the challenge of creating a practical timetabling system that is accessible to
non-technical users. Our system has received positive response from both faculty
and administrators. We are currently exploring the possibility of constructing the
2019-2020 course schedule for the entire college.
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