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Abstract. In this work we present a new approach to tackle the problem
of Post Enrolment Course Timetabling as specified for the International
Timetabling Competition 2007 (ITC2007), competition track 2. The
heuristic procedure is based on Ant Colony Optimization (ACO) where
artificial ants successively construct solutions based on pheromones (stig-
mergy) and local information. The key feature of our algorithm is the use
of two distinct but simplified pheromone matrices (representing event–
timeslot and event–room relations, respectively) in order to improve con-
vergence but still provide enough flexibility for effectively guiding the
solution construction process. Furthermore a local improvement method
is embedded. We applied our algorithm to instances used for the First
and Second International Timetabling Competition (TTComp2002 and
ITC2007). The results document that our approach is among the leading
algorithms for this problem; in many cases the optimal solution could be
found.

Keywords: timetabling, ant colony optimization, ant system, metaheuris-
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1 Introduction

Course timetabling problems periodically arise at various universities and other
educational institutions. The general course timetabling problem is known to be
NP-hard and is also in practice a challenging computational task.

1.1 Problem Description

Here, we focus in particular on the Post Enrolment Course Timetabling Prob-
lem as specified for the International Timetabling Competition 2007 (ITC2007),



competition track 2. In this problem the challenge is to assign university courses
to timeslots and rooms, where each assignment has to fulfill various constraints.
According to Lewis et al. (2007) a problem instance for the ITC2007 (track 2)
consists of

– a set of n events that are to be scheduled into 45 timeslots (5 days of 9 hours
each),

– a set of r rooms, each of which has a specific seating capacity, in which the
events take place,

– a set of f room-features that are satisfied by rooms and which are required
by events,

– a set of s students who attend various different combinations of events,
– a set of available timeslots for each of the n events (i.e. not all events will

be available in all timeslots), and
– a set of precedence requirements stating that certain events should occur

before others.

The goal is to assign the n events to the time slots and rooms such that the
following hard constraints are fulfilled (Lewis et al. 2007):

1. No student should be required to attend more than one event at the same
time.

2. In each case the room should be large enough for all the attending students
and should satisfy all of the features required by the event.

3. Only one event is put into each room in any timeslot.
4. Events should only be assigned to timeslots that are pre-defined as “avail-

able” for those events.
5. Where specified, events should be scheduled to occur in the correct order.

It is required that all solutions fulfill all of the hard constraints and leave
some events unassigned if necessary. A solution is defined to be feasible if all
events are assigned without hard constraint violation. Otherwise the quality of
the solution is characterized by the Distance to Feasibility (DTF) which is the
number of students of each of the unplaced events. Besides the hard constraints,
solutions should fulfill the following soft constraints:

1. Students should not be scheduled to attend an event in the last timeslot of
a day.

2. Students should not have to attend three (or more) events in successive
timeslots occurring in the same day.

3. Students should not be required to attend only one event in a particular day.

The Soft Constraint Penalty (SCP) is determined as the sum of the following
components:

– Count the number of students having just one class a day.



– Count the number of occurrences of a student having more than two classes
consecutively (3 consecutively scores 1, 4 consecutively scores 2, 5 consecu-
tively scores 3, etc.).

– Count the number of occurrences of a student having a class in the last
timeslot of the day.

Two solutions are first compared by their DTF, and only in the case of equal
DTFs the SCP is considered for comparison.

1.2 Previous Work

A comprehensive review of timetabling problems can be found in Schaerf (1999);
Carter and Laporte (1998). Many metaheuristics have been applied successfully
to diverse variants of this problem. For instance, various ACO algorithms have
been developed, e.g. a Max-Min Ant System is presented in Socha et al. (2002),
and an ant colony system in Rossi-Doria and Paechter (2003). In Rossi-Doria
and Paechter (2003) other metaheuristics including evolutionary algorithms, ant
colony optimization, iterated local search and simulated annealing as well as
neighborhood structures are compared. As these algorithms perform very dif-
ferently depending on various properties of the problem instances, the authors
conclude that hybrid algorithms may be a promising way to tackle the problem.
The most successful approaches at the TTComp2002 are described in detail in
(Kustoch 2003; Cordeau et al. 2003; Bykov 2003; Gaspero and Schaerf 2003;
Chiarandini et al. 2003; Rossi-Doria and Paechter 2004). The algorithm pro-
posed in Kustoch (2003) first constructs a feasible soultion and then applies
simulated annealing to minimize the soft constraint violations. Also in Cordeau
et al. (2003), a feasible solution is constructed at the beginning, but is then opti-
mized by a tabu search algorithm. Local search strategies are successfully applied
in Bykov (2003) and Gaspero and Schaerf (2003). A hybrid algorithm, described
in Chiarandini et al. (2003), is reported to find very good results for many of the
TTComp2002 instances. A memetic algorithm is presented in Rossi-Doria and
Paechter (2004).

Our approach is based on ant colony optimization (ACO) and can be more
specifically classified as Ant System (AS). For a comprehensive introduction to
ant colony optimization see Dorigo and Stützle (2004). In ACO algorithms artifi-
cial ants successively construct solutions based on global information (pheromones)
and local information (e.g. some greedy criterion). The pheromones hence act
as a probabilistic model for solution construction and are perpetually amplified
by ants that constructed high quality solutions. Pheromone evaporation coun-
teracts premature convergence to a poor local optimum. A generic ant colony
optimization procedure is shown in Algorithm 1.

More specifically, our AS can be described by Algorithm 2. The main task
in designing an ACO algorithm is to devise the pheromone structures and up-
date rules, and to find effective local methods able to drive the process towards
promising regions of the search space. The respective parts of our algorithm are
described in detail in the following sections.



Algorithm 1: ACO-Metaheuristic()
while not termination-criterion fulfilled do1

solution construction by artificial ants2

pheromone update3

optional deamon actions4

end5

Algorithm 2: TimeTabling-AS()
while time limit not yet reached do1

for each ant k = 1, . . . ,m do2

create random permutation πe of the events3

for each event in order πe do4

assign event based on pheromones5

end6

end7

locally improve each constructed solution8

for each solution with a better than average score do9

pheromone amplification for assignments appearing in solution10

end11

pheromone evaporation12

end13

2 Pheromone Information

In our algorithm ants are basically assigning events to timeslots and rooms based
on two kinds of pheromone denoted by τ s

ij and τ r
ik which represent the probabil-

ities of assigning an event i to timeslot j and room k, respectively. The decision
to store pheromone information in this way is a key-feature of the algorithm, as
it avoids the usage of a much larger data structure implied by a more traditional
encoding using individual pheromone values for all slot/room/event combina-
tions (see e.g. Socha et al. (2002)). On the other hand it contains more informa-
tion than the exclusive use of event–timeslot pheromones (e.g. Rossi-Doria et al.
(2002); Socha et al. (2003)).

Obviously, distinct pheromone matrices τ s and τ r are not as expressive as a
three-dimensional pheromone matrix (τijk) covering all combinations of events i,
timeslots j, and rooms k would be. On the other hand such a three-dimensional
matrix can be expected to be sparse, i.e. there are few elements different from
zero. Thus, it is likely that the elements τijk can be sufficiently well approximated
by τijk ≈ τ s

ij × τ r
ik. Furthermore we do not expect particularily strong mutual

dependencies of event–room and event–timeslot relations. Suppose some course
E is required to be held in a subset of the rooms including room R1 and the
students attending this course as well as some precedence constraints require the
event to be scheduled early at the first day, say at one of the slots S1, . . . , Sm.
There is no obvious need to express the demand to assign E to exactly R1



when using S1 for instance, as all rooms satisfying the requirements of E will
typically be equally good in this situation w.r.t. a current partial solution. These
considerations directly lead to the conclusion that the assignment to a room is
typically less critical than the assignment to a timeslot, which is also supported
by our experiments. If there are mutual dependencies, they are handled implicitly
by the solution construction procedure.

3 Solution Construction

The solution construction considers the events in a uniform random order and
assigns each event to a feasible room and a feasible time slot in a greedy ran-
domized way (if possible) considering the pheromone information. In more de-
tail, for each event randomized weighted permutations of the available slots and
rooms (πs and πr, respectively) are derived in such a way that slots (rooms)
with higher pheromone values for the current event are more likely to appear
earlier than slots (rooms) with low pheromone values. This can be compared to
the fitness proportional selection in genetic algorithms as for each position an
item is selected (from the remaining ones) with a probability proportional to the
respective pheromones.

The ant then tries to assign the current event to a slot/room combina-
tion based on their order in πs and πr, respectively. The first possible assign-
ment not violating any hard constraints w.r.t. the current partial solution is
accepted. To ensure that both kinds of pheromone are accounted for in a bal-
anced way, the slot/room combinations are considered in the following order:
(πs
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r). See also Fig. 1.

To speed up this process the weighted random permutations are not entirely
created in advance, but rather the requested elements are calculated on demand.
Algorithm 3 performs this task for the slots; the room-pheromones are treated
analogously. The algorithm returns the requested j-th element from the weighted
random permutation πs. The global array ws is assumed to be filled with the
respective rows of the pheromone matrices τ s for the event i under consideration.
Before the method is executed the first time, let σ ←

∑45
l=0 w

s
l .

The integer variable pos stores the index to which the weighted permutation
has yet been created. If i is less than pos no further computation is required. Oth-
erwise the remaining elements are calculated (lines 3-20). The function swap(i, j)
exchanges the elements πs

i , π
s
j and ws

i , w
s
j respectively. In the special case of all

remaining weights being zero (line 14-18), some arbitrary element is chosen.
Note that ws and πs do not need to be reinitialized for each ant. Moreover, for
all but the first ants the method has a much better performance, as ws and πs

are already roughly sorted in advance.

4 Pheromone Update

After each iteration ants with the lowest number of unplaced events and a bet-
ter than average SCP-score add an amount of pheromone proportional to the
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Fig. 1. Assignment of an event to a feasible room and timeslot: The pheromone matrix
rows τ s

i τ
r
i are copied into vectors ws and wr and sorted according to weighted random

permutations πs and πr so that entries with higher values appear more likely at the
beginning. Room/timeslot combinations are then checked in the indicated order, and
the first feasible assignment is accepted.

solution quality for the performed event/slot and event/room assignments. For
the event/slot assignments, this is done in detail as follows:

4τij =
{
f · g if (i, j) part of the solution
0 otherwise (1)

f =
{ 100

#unplaced if there are unplaced events
200 otherwise

(2)

g =
{ 1000

SCP SCP 6= 0
2000 otherwise (3)

The numeric constants have been determined by preliminary experiments. They
numerators are chosen such that for most solutions f and g are greater than
one. The constants used when the denominator becomes zero are chosen to be
twice the denominator, which is designed to boost good assignments somewhat.

If an assignment is found to cause a violation of soft constraints, the involved
assignments are punished accordingly



Algorithm 3: getNextPermItem(j)
if j > pos then1

for j′ = pos, . . . , j do2

if σ > ε then3

rnd← σ · random number4

q ← pos5

ξ ← 06

while ξ < rnd and q < 45 do7

ξ ← ξ + ws
q8

q ← q + 19

end10

σ ← σ − ws
q−111

swap(q − 1, j′)12

else13

// the remaining weights are all zero14

arbitrarily choose one of the remaining indizes rnd15

swap(rnd, j′)16

end17

pos← pos+ 118

end19

end20

return πs
j21

∆τ̃ij ← (1− (1− γ)SCP(e)) · f · g, (4)

where SCP(e) denotes the soft constraint penalty induced by event e. This yields
the following pheromone update:

τ s
ij ← max(0, τ s

ij +4τij −4τ̃ij). (5)

The maximum-calculation avoids negative pheromone values which might other-
wise appear due to the penalization w.r.t. SCP. Finally, pheromone evaporation
follows the standard AS method, which is

τ s
ij ← (1− ρ)τ s

ij . (6)

The pheromone update for the event–room pheromones τ r
ik is performed ana-

logously. In the case of stagnation, i.e. no new so-far-best solution has been
found during the last 500 iterations, the pheromone values are normalized. The
normalization procedure performs a linear scaling, such that the average value
of the original pheromones remains the same and the maximum deviations from
this average is relatively small, e.g. ten percent.



5 Improvement Method

Often, ACO approaches benefit significantly by including a local search proce-
dure for improving candidate solutions derived by the ants. In our algorithm we
employ an improvement heuristic that tries to move costly events (i.e. events
which violate soft constraints) to a different timeslot if this can be achieved
without violating any hard constraints while removing at most one other event
from the solution. If an event needed to be removed, the procedure is applied
recursively until either a suitable place is found or the maximum search depth is
reached. We used a maximum search depth of 16 levels. At each level the events
are ranked by their associated cost (i.e. SCP) and the most costly events are
tried first. A chain of moves is accepted if it reduces the total soft constraint
penalty. If the move has been accepted, the search is aborted. This improvement
heuristic is applied to all events with violate soft constraints.

6 Computational Results

The algorithm is parameterized by α (importance of the pheromones), β (impor-
tance of local information), ρ (pheromone evaporation) and η (number of ants).
Robust parameter values have been determined by preliminary experiments. It
turned out that α ∈ [1.0, 1.1] yields good results, and the choices of γ and η are
less critical. Lower values of γ and η reduce the time to obtain a solution with
DTF=0, but decrease the average solution quality as well. As no local informa-
tion is used in our algorithm, β = 0. The pheromone matrices τ r and τ r are
initialized with the value 0.5. Table 1 lists the parameter settings used for the
subsequent computational experiments.

Parameter Value Description

α 1.0 importance of pheromone
ρ 0.25 pheromone evaporation
γ 0.3 penalty
η 20 number of ants

tmax 299/294 s CPU-time limit for ITC2007/TTComp2002

Table 1. Parameter values used for our computational experiments.

We did not use any local heuristic information. This information is sometimes
called the visibility function, especially in the case of the traveling salesman
problem. In this case, however, it is very hard to find a meaningful function which
expresses the desirability of a particular assignment. Furthermore, a comparison
of different optimal solutions showed few similarities, which is evidence that for
the solution this problem such a function is not necessarily beneficial.

We performed our computational experiments with the instances used for
the First International Timetabling Competition (TTComp2002) and the early



Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SCPbest 55 43 61 134 134 32 52 48 39 77 39 102 94 109 47 26 78 35 119 19
SCPavg 82 64 92 208 185 59 138 107 70 118 75 143 156 175 89 45 143 59 187 38
σSCP 10 9 11 41 20 16 26 19 13 15 12 17 22 29 18 9 22 8 29 7
Kostuch 45 25 65 115 102 13 44 29 17 61 44 107 78 52 24 22 86 31 44 7
Jaumard et al. 61 39 77 160 161 42 52 54 50 72 53 110 109 93 62 34 114 38 128 26
Bykov 85 42 84 119 77 6 12 32 184 90 73 79 91 36 27 300 79 39 86 0
Gaspero et al. 63 46 96 166 203 92 118 66 51 81 65 119 160 197 114 38 212 40 185 17
Chiarandini et al. 57 31 61 112 86 3 5 4 16 54 38 100 71 25 14 11 69 24 40 0
Socha 65 36 69 138 143 24 24 28 36 75 50 95 79 73 31 23 108 26 108 5

Table 2. This table shows results on the TTComp2002 instances. Lines 2 to 4
list best and average SCP scores as well as corresponding standard deviations
of final solutions obtained by our AS in 100 runs/instances. DTF is zero in all
cases. Lines 5 to 8 list the best results of the TTComp2002 top four contestants
(which could be replicated by the organizers) (Kustoch 2003; Cordeau et al.
2003; Bykov 2003; Gaspero and Schaerf 2003). The last two rows show further
excellent results obtained by Chiarandini et al. (2003); Socha et al. (2002), who
did not officially participate at the competition. All results can be found on the
competition website.

and late data sets used for the Second International Timetabling Competition
(ITC2007). All experiments have been executed on an Intel Xeon 5160 (3.0 GHz)
Windows Server 2003 Standard 64-bit with Sun Java SE 1.6.0 04 64-bit Server
VM. With the benchmark-tools for the competitions, we determined tmax = 294
seconds as permitted CPU-time for TTComp2002 and tmax = 299 seconds for
ITC2007. All results (except those presented later in Fig. 2) have been obtained
within these time-limits.

Table 2 shows the results for the TTComp2002 instances. As the algorithm
is especially tuned for ITC2007 (considering in particular the hard constraints
4 and 5) and no modifications have been done in order to especially support
TTComp2002 instances, the results are only moderate. Nevertheless, the average
values lie in the range of the best four participants of TTComp2002.

Table 3 lists the results achieved for the ITC2007 instances. The first two
rows show that an optimum solution could be found within the given time limit
in many cases. Furthermore the probability of finding a solution with DTF=0
is very high, and also the average SCP values are very promising. Within the
given time limit, on average 5000 iterations have been performed. Figure 2 shows
time-to-target plots for two typical instances.

We also tested the algorithm without applying the local improvement method.
The obtained results indicate that local improvement leads to slightly but signif-
icantly better solutions on average. However, it is remarkable that even without
this procedure high quality solutions are usually found.



Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DTFbest 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SCPbest 0 0 110 53 13 0 0 0 0 0 143 0 5 0 0 0

DTFavg 237 274 0 0 0 2 0 0 109 0 0 20 2 0 0 0
SCPavg 613 556 680 580 92 212 4 61 202 4 774 538 360 41 29 101
σDTF 290 369 0 0 0 9 0 0 294 0 6 56 9 0 0 0
σSCP 612 671 255 268 55 165 24 47 492 18 247 605 167 56 104 72
P (DTF = 0) .54 .59 1.0 1.0 1.0 .95 1.0 1.0 .85 1.0 .99 .86 .94 1.0 1.0 1.0

Table 3. Results for the ITC2007 early and late instances. The first two rows indicate
the best results achieved within the given time limit. The distance to feasibility is
denoted by DTF, soft constraint penalty by SCP. The subsequent rows list average
solution values of 100 runs followed by the respective standard deviations and the
probability to reach DTF=0.

Fig. 2. Time-to-target plots showing the SCP-values for instances 1 and 5 of ITC2007.
The upper plots depict average values over ten runs, the plots on the bottom show the
corresponding minimum values.

7 Conclusions

The large majority of the competition instances can with high probability be
solved to optimality within a couple of minutes (i.e. the time limit for the
ITC2007 competition).



The algorithm ranked 4th among all submitted algorithms, which demon-
strates, that the presented algorithm falls within the leading algorithms for this
task. For 5 out of 24 instances our algorithm found the best solution of all 5 fi-
nalists, for a further 6 instances we tied another algorithm for the best solution.
On the other hand, our algorithm also showed the largest variation in solution
quality, for several instances it produced both the best and the worst solution.
This is an indication that it was tuned to be too aggressive, favoring a single
good solutions over repeatably good solutions. It remains to be examined if the
algorithm can also be tuned to show less variation in solution quality.

From our point of view the key feature of the algorithm is the use of two dis-
tinct but relatively compact pheromone matrices in combination with an effec-
tive procedure to exploit their information in the heuristic solution construction.
The algorithm is able to produce high quality solutions even without the local
improvement method, but better results could be achieved when including it.

Further experimental investigations on a larger set of instances with different
characteristics need to be performed in order to get a deeper understanding of the
advantages and disadvantages of the described approach and the influence of its
various strategy parameters. Also, combinations with other local improvement
techniques may be studied for eventually further improving the performance.
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