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1 Introduction

The International Timetabling Competition 2002 has been organized by the
Metaheuristic Network in order to compare different algorithms in a common
measurable ground. All information about problem definition, instances, rules,
and solution evaluation is available at the webpage http://www.idsia.ch/
Files/ttcomp2002/, and for the sake of brevity we do not repeat them here.

We have participated in the competition, and in this abstract, we discuss our
solution method, our scores, and we provide some personal comments about the
general outcomes.

2 Algorithm description

Our solver is based on the local search paradigm. In particular, it relies on
the multi-neighbourhood local search idea proposed in [1], which is based on
the composition of neighbourhoods and the interleaving of different local search
algorithms.

In details, our solver is composed by three stages that are interleaved se-
quentially, and the whole process is repeated until the total time is expired.
Each stage starts from the final state reached from the previous one, and the
first stage starts from a random state.

The search space is represented by two integer-valued vectors of size |E|
(where E is the set of events) that store, respectively, the timeslots and the
rooms assigned to each event. The neighbourhoods employed are described below
as modifications of the above vectors.

Stage 1: Hill climbing

The hill climbing procedure draws a random move at each iteration. The move
is accepted if it improves or leaves unchanged the value of the cost function.

The neighbourhood used is the set-union of three neighbourhoods:

ChangeTime: changes the timeslot of an event (the room is left unchanged);



ChangeRoom: changes the room of an event (the timeslot is left unchanged);
SwapTime: swaps the timeslots of two events (each takes the room of the

other).

The random selection is done in two steps: first we select the basic neigh-
bourhood, with uniform probability (1/3 each), and then we uniformly draw a
random move from the selected neighbourhood. Only non-trivial moves are gen-
erated and evaluated; that is, we avoid to move an event from a room r to the
room r itself (and similar ones).

The stop criterion is based on the number of idle iterations, that is the
iterations elapsed since the last improvement. We fixed this number to 300,000
for our solver.

The final state of this stage is the last one generated, which (for the hill
climbing) has the minimum cost among the visited ones.

Stage 2: Tabu search

The tabu search procedure uses a variable-length short-term tabu mechanism
(without any form of long-term prohibition). The neighbourhood used is:
ChangeBoth: moves an event in a different timeslot and a different room.

Not all the neighbours are evaluated, but only those that satisfy the following
conditions:
– the event has a minimum number of students (set at value 3 in the solver);
– the target room is free in the target timeslot;
– the move is not tabu, that in our case means that it does not involve the

same event of a move in the tabu list.

All moves that satisfy all three conditions are generated and evaluated for
the selection of the best move at each iteration. The stopping condition of this
stage is a compound one: the stage stops after a number of idle iterations that is
inversely proportional to the density of the instance or when a fixed total number
of iterations has elapsed. We allow less idle iteration to denser instances in order
to allow roughly the same running times for each round. Regarding the number
of iterations allowed, we grant the algorithm a total number of iterations equal
to 3 times the number of idle iterations granted. The tabu list length varies from
20–30 to 30–40 according to the density of the instance. The final state of the
stage is the one with best cost among the visited states.

Stage 3: Multi-swap shake

This stage performs only one single move, selecting the best neighbour from the
following neighbourhood:
MultiSwap: all events in a timeslot are moved to a different timeslot, and vice

versa. Rooms are kept unchanged.

The final state of this stage is the one obtained performing the best move,
even if this is a worsening move. The purpose of this neighbourhood is to perturb
the current solution, without introducing too many new violations.



Implementation

The algorithm has been implemented in the C++ language, compiled with gcc
v. 3.2, and makes use of the EasyLocal++ framework [2] for the development
of local search algorithms.

3 Results and discussion

For each one of the 20 instances we made 200 trials and we stored the best result.
Our results have been verified by the competition organizers and are reported
in the competition site along with the others.

Our solver resulted fourth in the general ranking, but it is actually the sixth
best solver if we include also the two teams that where not included in the list
because these were developed by members of the Network.

A detailed comparison of the solution methods is not easy and is still on-
going. However, at a first glance we believe that the main differences between
our algorithm and the ones that ranked better in the competition reside in the
following points.

Room assignment

Looking at the description of the solver classified ahead, it seems that all of them
use the simplified search space as described in [4]. That is, the room assignment
is not part of the search space but it is generated a posteriori by a matching
algorithm that assigns events to available rooms, separately for each timeslot.

In retrospective, we see that probably our choice of using the larger search
space, and not the matching was not the right one. In fact, the possibility of
delegating the room assignment to the post-processor prevents the search to get
stuck in states characterized by bad room assignments.

We followed such an approach in order to experiment a different line of
research, which would have been entirely based on local search. This choice
was dictated also by the possibility to extend the solver to more complex real
settings, in which the matching is not a viable option. For example, if we are
allowed to express a constraint requiring that events in different periods have
to be scheduled in the same room, then the matching becomes more critical. In
fact, the addition of constraints on the possible matching makes, in most cases,
the matching problem NP-complete (see [3]).

Initial solution

All our competitors employ some more or less complex form of greedy/construction
algorithm for building an initial feasible solution, whereas our algorithm starts
from a randomly generated solution (possibly infeasible). Our experiments with
good initial solutions are still under consideration, but so far they did not provide
general improvements.



Neighbourhood exploration

Most of the algorithms proposed do not allow the search to move away from
feasibility, whereas our algorithm deliberately retains the possibility to move
from feasible to infeasible solutions. We decided to do it this way because we
believe that in many cases the path leading from a good solution to a better one
passes through some infeasible solutions. Unfortunately, though, the exploration
of all infeasible neighborhood costs time, and it seems that for the competition
instances the trade-off turned out to be in favour of the other choice. It might
be the case, however, that in more difficult instances, i.e. instances with zero or
a few feasible solutions, our choice could outperform the other.

Finally, differently from our algorithm, all the top-scoring procedures ben-
efit of a “delta-evaluation” mechanism for speeding up the exploration of the
neighbourhood. Such a mechanism consists in tabling the cost difference for all
possible moves, instead of recomputing them at each iteration. The description
of the winning algorithm reports that the delta-evaluation saves about 60% of
the overall computational time. We plan to incorporate such a mechanism in
our algorithm as well, allowing our procedure to perform more iterations in the
same amount of time.
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